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ABSTRACT In this survey paper, we systematically summarize existing literature on bearing fault
diagnostics with deep learning (DL) algorithms. While conventional machine learning (ML) methods,
including artificial neural network, principal component analysis, support vector machines, etc., have been
successfully applied to the detection and categorization of bearing faults for decades, recent developments
in DL algorithms in the last five years have sparked renewed interest in both industry and academia for
intelligent machine health monitoring. In this paper, we first provide a brief review of conventional ML
methods, before taking a deep dive into the state-of-the-art DL algorithms for bearing fault applications.
Specifically, the superiority of DL based methods are analyzed in terms of fault feature extraction and
classification performances; many new functionalities enabled by DL techniques are also summarized.
In addition, to obtain a more intuitive insight, a comparative study is conducted on the classification
accuracy of different algorithms utilizing the open source CaseWestern Reserve University (CWRU) bearing
dataset. Finally, to facilitate the transition on applying various DL algorithms to bearing fault diagnostics,
detailed recommendations and suggestions are provided for specific application conditions. Future research
directions to further enhance the performance of DL algorithms on health monitoring are also discussed.

INDEX TERMS Bearing fault, deep learning, diagnostics, feature extraction, machine learning.

I. INTRODUCTION
Electric machines are widely employed in a variety of indus-
try applications and electrified transportation systems. For
certain applications these machines may operate under unfa-
vorable conditions, such as high ambient temperature, high
moisture and overload, which can eventually result in motor
malfunctions that lead to high maintenance costs, severe
financial losses, and safety hazards [1]–[3]. The malfunction
of electric machines can be generally attributed to various
faults of different categories, including drive inverter failures,
stator winding insulation breakdown, bearing faults and air
gap eccentricity. Several surveys regarding the likelihood of
induction machine failures conducted by the IEEE Indus-
try Application Society (IEEE-IAS) [4]–[6] and the Japan
Electrical Manufacturers’ Association (JEMA) [7] reveal that
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bearing fault is the most common fault type and is responsible
for 30% to 40% of all the machine failures.

The structure of a rolling-element bearing is illustrated
in Fig. 1, which contains the outer race typically mounted
on the motor cap, the inner race to hold the motor shaft,
the balls or the rolling elements, and the cage for restrain-
ing the relative distances between adjacent rolling ele-
ments [8]. The four common scenarios of misalignment
that are likely to cause bearing failures are demonstrated
in Fig. 1(a) to (d). Since bearing is the most vulnerable
component in a motor drive system, accurate bearing fault
diagnostics has been a research frontier for engineers and
scientists for the past decades. Specifically, this problem
has been approached by developing a physical model of
bearing faults, and understanding the relationship between
bearing faults and measurable signals, which can be captured
by a variety of sensors and analyzed with signal process-
ing techniques. Sensing modalities that have been explored
include vibration [9], [10], acoustic noise [11], [12], stator
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FIGURE 1. Structure of a rolling-element bearing with four types of
common scenarios of misalignment that are likely to cause bearing
failures: (a) misalignment (out-of-line), (b) shaft deflection, (c) crooked or
tilted outer race and (d) crooked or tilted inner race [8].

current [13], [14], thermal-imaging [15], and multiple sensor
fusion [16], among which vibration analysis is the most dom-
inant. The existence of a bearing fault as well as its specific
fault type can be readily determined by performing frequency
spectral analysis on the monitored signals and analyzing their
components at characteristic fault frequencies, which can
be calculated by a well-defined mechanical model [8] that
depends on the motor speed, the bearing geometry and the
specific location of the bearing defect.

However, accurately identifying the presence of a bearing
fault can be challenging in practice, especially when the fault
is still at its incipient stage and the signal-to-noise ratio of
the monitored signal is small. In addition, unlike other motor
failures (stator inter-turn, broken rotor bar, etc. [3]) that can
be accurately determined by electric signals, the uniqueness
of a bearing failure lies in its multi-physics nature. It is the
primary mechanical vibration due to the bearing defect that
triggered the abnormal electric signal, which further influ-
ences the output torque, the motor speed, and finally the bear-
ing vibration pattern itself, whose fault frequency is directly
proportional to the motor speed. Furthermore, the accuracy of
the traditional physical model-based vibration analysis can be
further affected by background noise due to external motion
and vibration, and its sensitivity is also subject to change with
respect to sensor mounting positions and spatial constraints in
a highly-compact environment. Therefore, instead of vibra-
tion analysis, a popular alternative approach is to analyze
the stator current signal [13], [14], which has already been
measured in motor drives to regulate the motor’s torque and
speed, and thus it would not bring extra device or installation
costs.

Despite its advantages such as economic savings and
simple implementation, the motor current signature analy-
sis (MCSA) can encounter many practical issues. For exam-
ple, the magnitude of stator currents at the bearing fault
frequency can vary at different loads, different speeds, and

different power ratings of the motors themselves, thus bring-
ing challenges to identify a universal threshold of the stator
current to trigger a fault alarm at an arbitrary operating con-
dition. Therefore, a thorough and systematic commissioning
stage is usually required while the motor is still at the healthy
condition, and the healthy data would be collected while
the target motor is running at different loads and speeds.
However, this process, summarized as a ‘‘Learning Stage’’
in patent US5726905 [17], can be tedious and expensive to
perform, and needs to be repeated for any new motor with a
different power rating.

Most of the challenges described above can be attributed
to the fact that all of the conventional model-based methods
rely solely upon the threshold value of different signals (data)
at the fault frequencies to determine the presence of a bear-
ing fault. These models can only describe the signal fea-
tures of a few well-defined fault types, while in reality the
naturally occurring faults are often more complicated. For
example, at the early stage of a fault the signatures can be
less well-defined or even not traceable by using the physical
models; more than one faults can occur at the same time,
which potentially modifies the fault features and creates new
features due to the the coupling effect. Therefore, there may
exist many unique features or patterns hidden in the data
themselves that can potentially reveal a bearing fault, and
it is almost impossible for humans to identify these convo-
luted features through manual observation or interpretation.
Therefore, many researchers have applied various machine
learning (ML) algorithms, including artificial neural net-
works (ANN), principal component analysis (PCA), support
vector machines (SVM), etc., to parse the data, learn from
them, and apply what they have learned to make intelligent
decisions regarding the presence of bearing faults [18]–[21].
Most of the literature applying these ML algorithms report
satisfactory results with classification accuracy over 90%.

To achieve an even better performance at versatile operat-
ing conditions and noisy environments, deep learning (DL)
based methods are becoming increasingly popular to meet
this demand [22]–[25]. This literature survey incorporates
more than 180 papers dedicated to bearing fault diagnosis,
around 80 of which employed some type of DL approaches.
The number of papers also grows exponentially over the
recent years, indicating a booming interest in employing DL
methods for bearing fault diagnostics.

In this context, this paper seeks to present a thorough
overview on the recent research work devoted to applyingML
and DL techniques on bearing fault diagnostics. The rest of
the paper is organized as follows. In Section II, we introduce
some of the most popular datasets used for bearing fault
detection. Next, in Section III, we look into some traditional
ML methods, including ANN, PCA, k-nearest neighbors
(k-NN), SVM, etc., with a brief overview of major publi-
cations applying each ML algorithm for bearing fault detec-
tion. For the main part of this paper, in Section IV, we take
a deep dive into the research frontier of DL based bear-
ing fault identification. In this section, we will provide our
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understanding of the research trend toward DL approaches.
Specifically, we will discuss the advantages of DL based
methods over the conventional ML methods in terms of
fault feature extraction and classifier performance, as well as
new functionalities offered by DL techniques that cannot be
accomplished before. We will also provide a detailed analysis
to each of the major DL techniques, including convolutional
neural network (CNN), auto-encoder (AE), deep belief net-
work (DBN), recurrent neural network (RNN), generative
adversarial network (GAN), and their applications in bearing
fault detection. In SectionV, a comparative study is conducted
on different DL algorithms to offer a more intuitive insight,
which compared the classifier performance utilizing the pop-
ular open source ‘‘CaseWestern Reserve University (CWRU)
bearing dataset’’. Finally in Section VI, detailed recommen-
dations and suggestions are provided regrading the selection
of specific DL algorithms for specific application scenarios,
such as the setup environment, the data size, and the number
of sensors and sensor types. Future research directions are
also discussed to further improve the classifier accuracy, and
facilitate domain adaptation and technology transfer from
laboratories to the real-world.

II. POPULAR BEARING FAULT DATASETS
Data is the foundation for all of the ML methods. To develop
effective ML and DL algorithms for bearing fault detection,
a good collection of datasets is necessary. Since the natural
bearing degradation is a gradual process and may take many
years, most people conduct experiment and collect data either
using bearings with artificially induced faults, or with accel-
erated life testing methods. While the data collection is still
time consuming, fortunately a few organizations have made
the effort and published their bearing fault datasets for engi-
neers and researchers to develop their own ML algorithms.
Thanks to their prevalence in the research community, these
datasets can also serve as a common ground for the evaluation
and comparison of different algorithms.

Before getting into details of various ML and DL devel-
opments, in this section, we briefly introduce a few popular
datasets used by most papers covered in this review.

A. CASE WESTERN RESERVE UNIVERSITY (CWRU)
DATASET
The test stand used to acquire the Case Western Reserve
University (CWRU) bearing dataset is illustrated in Fig. 2,
in which a 2-hp induction motor is shown on the left, a torque
transducer/encoder is in the middle, while a dynamometer
is coupled on the right. Single point faults are introduced
to the bearings under test using electro-discharge machining
with fault diameters of 7 mils, 14 mils, 21 mils, 28 mils, and
40mils, at the inner raceway, the rolling element and the outer
raceway. Vibration data are collected for motor loads from
0 to 3 hp andmotor speeds from 1,720 to 1,797 rpm using two
accelerometers installed at both the drive end and fan end of
the motor housing, and two sampling frequencies of 12 kHz
and 48 kHz were used. The generated dataset is recorded and

FIGURE 2. Experimental setup for collecting the CWRU bearing
dataset [26].

FIGURE 3. Modular test rig collecting the Paderborn bearing dataset
consisting of (1) an electric motor, (2) a torque-measurement shaft, (3) a
rolling bearing test module, (4) a flywheel, and (5) a load motor [27].

made publicly available on the CWRU bearing data center
website [26].

The CWRU dataset serves as a fundamental dataset to
validate the performance of different ML and DL algo-
rithms, and a comprehensive comparative study on previous
work employing the CWRU dataset will be presented in
Section V.

B. PADERBORN UNIVERSITY DATASET
The Paderborn university bearing dataset [27] includes the
synchronousmeasurement ofmotor current and vibration sig-
nals, thus enabling the verification of multi-physics models
and sensor fusion of different signals to increase the accuracy
of bearing fault detection. Both stator current and vibra-
tion signals are measured with a high resolution and a high
sampling rate, and experiments are performed on 26 dam-
aged bearings and 6 undamaged (healthy) ones. Among the
26 damaged bearings, 12 are artificially damaged, and the
other 14 have more realistic damages caused by accelerated
life tests. This enables a more confident evaluation of ML
algorithms in practical applications, where the real defects are
generated through aging and the gradual loss of lubrication.
The modular test rig used to acquire the Paderborn bearing
dataset is illustrated in Fig. 3.

C. PRONOSTIA DATASET
Another popular dataset for predicting a bearing’s remaining
useful life (RUL) is known as the ‘‘PRONOSTIA bearings
accelerated life test dataset’’, which serves for researchers to
investigate new algorithms for bearing RUL prediction. Dur-
ing the International Conference on Prognostics and Health
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FIGURE 4. PRONOSTIA testbed (Department of Automatic Control and
Micro-Mechatronic Systems (AS2M), Franche-Comté Electronique
Mécanique [29].

Management (PHM) in 2012, an ‘‘IEEE PHM 2012 Prog-
nostic Challenge’’ was organized, where the PRONOSTIA
degradation dataset [28] was provided to participants allow-
ing them to train their prognostic methods. Every par-
ticipant’s method was evaluated based on the estimation
accuracy of the RUL of bearings under test.

The main objective of PRONOSTIA is to provide real
data related to the accelerated degradation of bearings per-
formed at varying operating conditions [29]. The operating
conditions are characterized by two sensors: a rotating speed
sensor and a force sensor. In the PRONOSTIA platform as
shown in Fig. 4, the bearing health is monitored by gath-
ering two types of signals: temperature and vibration (with
two uni-axis accelerometers installed in the horizontal and
the vertical direction respectively). Furthermore, the data are
recorded with a high sampling frequency which allows the
interpretation of the entire frequency spectrum of interest
during the bearing degradation process. Ultimately, the mon-
itored data can be used for post-processing to extract the
relevant features offline and continuously assess the bearing’s
RUL.

D. INTELLIGENT MAINTENANCE SYSTEMS (IMS) DATASET
The IMS bearing dataset [30] is generated by the NSF I/UCR
Center for Intelligent Maintenance Systems (IMS) with sup-
port from Rexnord Corp. Different from the other datasets,
where the bearing faults are either artificially induced by
scratching or drilling the bearing surface, or created by exert-
ing a shaft current for accelerated life testing, the IMS dataset
contains a complete record of natural bearing defect evolu-
tion. Specifically, the bearing is kept running for 30 days
consecutively with a constant speed of 2,000 rpm, totaling
around 86.4 million cycles before a defect is confirmed [31].
The test rig consists of four Rexnord ZA-2115 double row
bearings installed on a shaft, which is coupled to an AC
motor via a rubber belt as shown in Fig. 5(a). A radial load
of 6,000 lbs is applied onto the shaft and bearing by a spring
mechanism. Two accelerometers are installed on each bearing
housing, and four thermocouples are attached to the outer race
of each bearing to record bearing temperature for monitoring
the lubrication purposes, as shown in Fig. 5(b).
The same experiment is repeated three times. Test 1 ends

up with an inner race defect in bearing 3 and a rolling element

FIGURE 5. Illustration of the (a) bearing test rig and (b) vibration sensor
placement of the IMS dataset [31].

defect in bearing 4. Test 2 and 3 end up with an outer race
defect in bearing 1 and 3, respectively. The vibration data is
collected every 5 or 10 minutes for a duration of 1 second
with the sampling rate set at 20 kHz by National Instruments
DAQCard 6062E. Since this dataset contains a complete col-
lection of vibration signals of bearing experiments from start
to failure with explicit time stamps, it is particularly suitable
for predicting the RUL of rolling-element bearings.

E. SUMMARY
A summary of the comparing the differences between dif-
ferent datasets is illustrated in TABLE 1. So far a majority
of literature on bearing fault identification with ML or DL
algorithms employ the CWRU dataset due to its simplicity
and popularity. The authors anticipate a growing interest on
the Paderborn dataset, as it contains both the stator current
signal and the vibration signal. In addition, this dataset also
enables the validation of deep transfer learning and domain
adaptation algorithms [32], [33] to predict a more realistic
bearing fault from accelerated life testing with classifiers
trained on artificially induced scratches or drills. Besides,
many researchers working on RUL prediction also rely on
the PRONOSTIA dataset and the IMS dataset. Since the main
scope of this paper is bearing fault detection, research contri-
butions on RUL prediction is not included in this literature
survey.
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TABLE 1. Comparison of popular bearing fault datasets.

III. CLASSICAL MACHINE LEARNING BASED
APPROACHES
Before the recent DL boom, a variety of classical ‘‘shal-
low’’ machine learning and data mining algorithms have
been around for many years, i.e., the artificial neural net-
work (ANN). Applying these algorithms requires a lot of
domain expertise and complex feature engineering. A deep
exploratory data analysis is usually performed on the dataset
first, followed by dimension reduction techniques such as
the principal component analysis (PCA), etc., for feature
extraction. Finally, themost representative features are passed
along to the ML algorithm. The knowledge base of different
domains and applications can be quite different and often
requires extensive specialized expertise within each field,
making it difficult to perform appropriate feature extraction,
or maintain a good level of transferability of ML models
trained in one domain to be generalized or transferred to other
contexts or settings.

Some of the earliest reviews investigating the use of artifi-
cial intelligence (AI) techniques on motor fault diagnostics
can be found in [18], [19], where the characteristic fault
frequencies for different motor fault types are systematically
summarized, and relevant papers employing ANN and fuzzy
systems are discussed. In this section, a brief summary of
each classical ML method will be presented, with a compre-
hensive list of publications for readers’ reference.

A. ARTIFICIAL NEURAL NETWORKS (ANN)
ANN is one of the oldest AI paradigms that has been applied
to bearing fault diagnostics for almost 30 years [34]. In [34],
the bearing wear of the motor is reflected in the damping
coefficient B that can be inferred from a nonlinear mapping
of the stator current I and the rotor speed ω. The complex-
ity of obtaining an analytical expression for this nonlinear
mapping is avoided by training a supervised neural network
with stator current and motor speed measurements as input
and predicted bearing condition as output. 35 training and
70 testing data patterns are collected on a laboratory test stand
with the Dayton 6K624B-type bearing at different operating
conditions. Highest bearing fault detection accuracy of 94.7%
is achieved with the conventional neural network using two
input nodes {I , ω}. The accuracy can be further improved
by utilizing five input dimensions {I , ω, I2, ω2, I∗ω} that are
manually selected. However, besides the commonly used cur-
rent sensor for bearing fault diagnostics, this method requires

an addition speed encoder to collect the motor speed signal
as an extra input, which is not commonly available in many
low-cost induction motor drives. Similarly, the rest of the
papers based on ANN [35]–[38] all require some degree of
human expertise to guide its feature selection process in order
to train the ANN model in a more effective manner.

B. PRINCIPLE COMPONENT ANALYSIS (PCA)
PCA is an algorithm that reveals the internal structure of the
data in a way that best explains the variance in the data. If a
multivariate dataset is visualized as a set of coordinates in
a high-dimensional data space (one axis per variable), PCA
can supply the user with a lower-dimensional projection of
this object viewed from its most informative viewpoint. Since
the sensitivity of various features that are characteristics of
a bearing defect may vary considerably at different operat-
ing conditions, PCA has proven itself as an effective and
systematic feature selection scheme that provides guidance
on manually choosing the most representative features for
classification purposes.
One of the earliest adoption of PCA on bearing fault diag-

nostics can be found in [39]. Experimental results revealed
that the advantage in using only PCA identified features
instead of the 13 original features is significant, as the fault
diagnosis accuracy is increased from 88% to 98%. The study
demonstrated that the proposed PCA technique is effective in
classifying bearing faults with a higher accuracy and a lower
number of input features when compared to using all of the
original feature. Similarly, the rest of the papers based on
PCA [40]–[43] take advantage of its data mining capability
to facilitate the manual feature selection process and generate
more representative features.

C. K-NEAREST NEIGHBORS (K-NN)
The k-NN algorithm is a non-parametric method used for
either classification or regression. In k-NN classification,
the output is the class of an object, which is identified by
a majority vote of its k nearest neighbors. One early imple-
mentation of the k-NN classifier on bearing fault diagnostics
can be found in [44], where k-NN serves as the core algo-
rithm for a data mining based ceramic bearing fault classi-
fier based on acoustic signals. Similarly, other k-NN based
papers [45]–[47] employ k-NN to perform a distance analysis
on each new data sample and determine whether it belongs to
a specific fault class.
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D. SUPPORT VECTOR MACHINES (SVM)
SVMs are supervised learning models that analyze data used
for non-probabilistic classification or regression analysis.
One classical work on the use of SVM towards identifying
bearing faults can be found in [48], where classification
results obtained by the SVM are optimal in all of the cases,
with an overall improvement over the performance of ANN.
Other similar SVMbased papers [49]–[61] also illustrated the
effectiveness and efficiency of employing SVM to serve as
the fault classifier.

E. OTHERS
Besides the commonly used ML methods listed above,
many other algorithms have been applied to the identifi-
cation of bearing faults, bringing in different characteris-
tics and benefits, including neural fuzzy network [62]–[64],
Bayesian networks [65]–[67], self-organizing maps [68],
[69], extreme learning machines (ELM) [70], [71], trans-
fer learning [72]–[74], linear discriminant analysis [75],
[76], quadratic discriminant analysis [37], random for-
est [77], independent component analysis [78], softmax clas-
sifiers [79], manifold learning [80], [81], canonical variate
analysis [82], particle filter [83], nonlinear preserving pro-
jection [84], artificial Hydrocarbon Networks [85], expecta-
tion maximization [86], ensemble learning [87], multi-scale
permutation entropy [88], empirical mode decomposi-
tion [89]–[93], topic correlation analysis [94], affinity propa-
gation [95], and dictionary learning [96], [97].

F. CHALLENGES WITH THE CLASSICAL ML ALGORITHMS
As presented in the earlier sections, to detect the presence
of a bearing fault using a classical ML algorithm, the char-
acteristic fault frequencies are calculated based on the rotor
mechanical speed and the specific bearing geometry, and
these frequencies will serve as fault features. This feature
determination process is known as ‘‘feature engineering’’.
The amplitude of signals at these frequencies can be moni-
tored to train various ML algorithms and identify any anoma-
lies. However, such a technique may encounter many chal-
lenges that ultimately affect the classification accuracy.

1) Sliding: The fault frequency is based on the assumption
that no sliding occurs between the rolling element and
the bearing raceway, i.e., these rolling elements will
only roll on the raceway. Nevertheless, this is seldom
the case in reality, as the rolling element often under-
goes a combination of rolling and sliding movement.
As a consequence, the calculated frequency may devi-
ate from the real fault frequency and make this man-
ually determined feature less informative of a bearing
defect.

2) Frequency Interplay: If multiple types of bearing faults
occur simultaneously, these faults will interact and the
resultant characteristic frequencies can add or sub-
tract due to a complicated electro-mechanical process,
thereby obfuscating the informative frequencies.

3) External Vibration: There is also the possibility of
interference induced from additional sources of vibra-
tion, i.e. bearing looseness and environment vibration,
which can obscure the useful features.

4) Observability: Some faults, such as the bearing lubri-
cation and general roughness related faults, do not
even manifest themselves as a characteristic cyclic fre-
quency, which makes them very hard to detect with the
traditional model-based spectral analysis or classical
data-driven ML methods.

5) Sensitivity: The sensitivity of various features that are
characteristic of bearing defect may vary considerably
at different operating conditions. A very thorough and
systematic ‘‘learning stage’’ is typically required to test
the sensitivity of these frequencies on any desirable
operating condition before it can be actually put into
use with the traditional approach.

Because of the aforementioned challenges, manually engi-
neered features based on the bearing characteristic fault fre-
quency can be difficult to interpret, and sometimes may
even lead to inaccurate classification results, especially when
applying the ‘‘shallow’’ classical ML methods that rely on
human-engineered features in the training process. There-
fore, many DL algorithms with automated feature extraction
capabilities and better classification performance have been
applied to bearing fault diagnostics, which will be discussed
in detail in the next section.

IV. DEEP LEARNING BASED APPROACHES
Deep learning is a subset of machine learning that achieves
great power and flexibility by learning to represent the world
as nested hierarchy of concepts, with each concept defined
in relation to simpler concepts, and more abstract represen-
tations computed from less abstract ones. The trend of tran-
sitioning from classical ‘‘shallow’’ machine learning algo-
rithms to deep learning can be attributed to the following
reasons.

1) Data explosion: With the availability of exploding
amount of data, and the application of crowdsourced
labeling mechanisms such as Amazon mTurk [98],
we are seeing a surging appearance of large scale
dataset in many domains, such as ImageNet in image
recognition, COCO for object segmentation and recog-
nition, VoxCeleb in speaker identification, et al. DL
generally requires a large amount of labeled data. Some
DL models in computer vision were trained using
more than one million images. For many applications,
including the diagnostics of bearing faults, such large
datasets are not readily available and will be expensive
and time consuming to acquire. On smaller datasets,
classical ML algorithms can compete with or even
outperform deep learning networks. With the increase
of the amount of data, the performance of DL can
significantly outperformmost classicalML algorithms,
as illustrated in Fig. 6 [99] by Andrew Ng.
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FIGURE 6. Performance comparison of deep learning and most classical
learning algorithms [99].

2) Algorithm Evolution: More techniques are being
invented and getting matured in terms of controlling
the training process of deeper models to achieve faster
speed, better convergence, and improved generaliza-
tion. For example, algorithms such as ReLU help accel-
erate convergence speed; techniques such as dropout
and pooling help prevent overfitting; numerical opti-
mization methods such as mini-batch gradient descent,
RMSprop, and L-BFGS optimizer help leverage more
data and train deeper models.

3) Hardware Evolution: Training deep networks is
extremely computationally intensive, but running on
a high performance GPU can significantly accelerate
this training process. Specifically, GPU offers paral-
lel computing capability and computational compati-
bility with deep neural networks, which makes them
indispensable for training DL based algorithms. More
powerful GPUs allows data scientists to quickly get the
DL training up and running. For example, the NVIDIA
Tesla V100 Tensor Core GPUs can now parse petabytes
of data orders of magnitude faster than traditional
CPUs [100], and leverage mixed precision to accelerate
DL training throughputs across every type of neural
network. In the most recent years, the emergence of
the accelerators for parallel computing such as GPUs,
FPGAs, ASICs and TPUs have promoted the fast evo-
lution of DL algorithms.

All of the factors above contribute to the new era of
applying DL algorithms to a variety of data-related appli-
cations. Specifically, advantages of applying DL algorithms
compared to classical ML algorithms include:

1) Best-in-Class Performance: The complexity of the
computed function grows exponentially with model
depth [101]. DL has the best-in-class performance
that significantly outperforms other solutions to prob-
lems in multiple domains, including speech, language,
vision, game playing, etc.

2) Automatic Feature Extraction: DL removes the need
for feature engineering. Classical ML algorithms usu-
ally demand sophisticated manual feature engineering,
which unavoidably requires expert domain knowledge
and numerous human effort. However, when using

deep neural network, there’s no need for this manual
process. One can simply pass the data directly to the
network, and the network can automatically learn the
features from raw data by auto-tuning the weights in
the network. The DL network eliminates completely
the challenging stage of feature engineering.

3) Transferability: The strong expressive power and high
performance of a deep neural network trained in one
domain can be easily generalized or transferred to
other contexts, settings or domains. Deep learning is
an architecture that can be adapted to new problems
relatively easily. For instance, problems in different
domains such as vision, time series, and language are
being solved using the same techniques like convolu-
tional neural networks, recurrent neural networks, and
long short-term memory, etc.

Thanks to the aforementioned reasons for the transition
from traditional methods to DL methods, as well as the ben-
efits of DL algorithms discussed above, we have witnessed
an exponential increase in DL applications, such as machine
health monitoring and fault diagnostics, among which the
bearing fault detection is a very representative case.

A. CONVOLUTIONAL NEURAL NETWORK (CNN)
Inspired by animal visual cortices [102], the convolution
operation is first introduced to detect image patterns in a
hierarchical way from simple features such as edge and corner
to complex features. Specifically, lower layers in the network
detect fundamental lower level visual features; and layers
afterward detect higher level features, which are built upon
these simple lower level features.

The first paper employing CNN to identify bearing fault
was published in 2016 [103], and in the next three years
many papers applying the same technique [104]–[118] have
emerged and contributed to advancing bearing fault detection
in various aspects. The basic architecture of a CNN-based
bearing fault classifier is illustrated in Fig. 7. Specifically,
the 1-D temporal raw data obtained from different accelerom-
eters are firstly stacked to 2-D vector form similar to the
representation of images, which is then passed over to a
convolutional layer for feature extraction, followed by a
pooling layer for down-sampling. The combination of this
convolution-pooling pattern is repeated many times to further
deepen the network. Finally, the output from the hidden layers
will be handed over to one or several fully-connected layers,
the result of which is transferred to a top classifier based on
Softmax or Sigmoid functions to determine if a bearing fault
is present.

In [103], the vibration data are collected using two uni-axis
accelerometers installed on x- and y- direction respectively.
A CNN is able to autonomously learn useful features for
bearing fault detection from the raw data pre-processed by
scaled discrete Fourier transform. The classification result
demonstrates that the feature learning based approach signifi-
cantly outperforms the feature engineering based approach of
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FIGURE 7. Architecture of the CNN-based fault diagnosis model [108].

conventional ML. Moreover, another contribution of this
work is to show that feature learning based approaches
such as CNN can also perform bearing health prognostics,
and identify some early-stage faulty conditions that have
no explicit characteristic frequencies, such as lubrication
degradation, which cannot be achieved using classical ML
methods.

To obtain a better trade-off between the training speed
and accuracy, an adaptive CNN (ADCNN) is applied on
the CWRU dataset to dynamically change the learning rate
in [104]. The entire fault diagnosis model employs a fault
pattern determination component using 1 ADCNN and a fault
size evaluation component using 3 ADCNNs, and 3-layer
CNNs with max pooling. Classification results demonstrate
that ADCNN has a better accuracy compared to conventional
shallow CNN and SVMmethods, especially in terms of iden-
tifying the rolling element defect. In addition, this proposed
ADCNN is also able to predict the fault size (defect width)
with a satisfactory accuracy. On top of the conventional struc-
ture of CNN, a dislocate layer is added in [105] that can
better extract the relationship between signals with different
intervals in periodic forms, especially during the change of
operating conditions. It is reported in [105] that the best
accuracy of 96.32% is achieved with a disclose step factor
k = 3, while the accuracy of conventional CNN without this
disclose layer is only 83.39%.

Similar to earlier work [103]–[106] implements a 4-layer
CNN structure with 2 convolutional and 2 pooling layers
employing both the CWRU dataset & dataset generated by
Qian Peng Company in China, and the accuracy outperforms
the conventional SVM and the shallow Softmax regression
classifier, especially when the vibration signal is mixed with
ambient noise. The improvement can be as large as 25%,
showcasing the excellent built-in denoising capabilities of the
CNN algorithm. A sensor fusion approach is applied in [107],
in which both the temporal and spatial information of the
CWRU raw data from two accelerometers at the drive end
and the fan end are stacked by transforming 1-D time-series
data into a 2-D matrix form. The average accuracy using
the fusion of two sensors is increased to 99.41% from the
previous 98.35% with only one sensor.

Many variations of CNN are also employed to tackle
the bearing fault diagnosis challenge [108]–[115] using

the CWRU dataset to obtain more desirable characteris-
tics than conventional CNN. For example, a CNN based
on LeNet-5 is applied in [108], which contains 2 alternat-
ing convolutional-pooling layers and a 2 fully-connected
layers. Padding is used to control the size of learned fea-
tures, and zero-padding is applied to prevent dimension loss.
This improved CNN architecture is able to provide a better
feature extraction capability with an astonishing accuracy
(99.79%) on test set, which is higher than other deep learning
based methods such as the adaptive CNN (98.1%) and the
deep belief network (87.45%). The proposed CNN based
on LeNet-5 also dominates the classical ML methods such
as SVM (87.45%) and ANN (67.70%). In addition, a deep
fully convolutional neural network (DFCNN) incorporating
4 convolution-pooling layer pairs is employed in [109], while
the raw data are also transformed into spectrograms for easier
processing. An accuracy of 99.22% is accomplished, out-
performing 94.28% of the linear SVM with particle swarm
optimization (PSO), and 91.43% of the conventional SVM.
These results are obtained using the same training set to
train different networks and the same test set to evaluate and
compare their performances.

To save the extensive training time required for most CNN
based algorithms, a multi-scale CNN (MS-DCNN) is adopted
in [110], where convolution kernels of different sizes are
used to extract features of different scales in parallel. The
mean accuracy of a 9-layer 1-D CNN, a 2-D CNN and
the proposed MS-DCNN are 98.57%, 98.25% and 99.27%,
respectively. In addition to the subtle increase in accuracy
compared to conventional CNNs, the number of parameters
to be determined during training is only 52,172, which is
significantly lower than those of 1-D CNN (171,606) and 2-
D CNN (213,206). Moreover, a very deep CNN of 14 layers
with training interference is used in [111], which is able to
maintain a high accuracy in noisy environments or during
load shifts. However, the training time and the amount of
parameters to be trained would increase dramatically, posing
a potential threat of overfitting the data. Similarly, to over-
come the impact of load variations, a novel bearing fault diag-
nosis algorithm based on improved Dempster-Shafer theory
CNN (IDS-CNN) is employed in [112]. This improved D-S
evidence theory is implemented via a distance matrix from
the modified Gini Index. Extensive evaluations revealed that,
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by fusing complementary or conflicting evidences from dif-
ferent models and sensors, the proposed IDS-CNN algorithm
is able to accommodate different load conditions and achieve
a better fault diagnosis performance than conventional DNN
models and ML approaches such as SVM.

To better suppress the impact of speed variations on bear-
ing fault diagnosis, a novel architecture based on CNN
referred to as ‘‘LiftingNet’’ is implemented in [113], which
consists of split layers, predict layers, update layers, pooling
layers, and fully-connected layers, with the main learning
process performed in a split-predict-update loop. A 4-class
classification is carried out with the CWRU dataset ran-
domly and evenly split into training set and test set. The
final classification accuracy is 99.63%. However, since all
of the signals recorded by CWRU are measured in a small
speed range (from 1,720 to 1,797 rpm), another experiment
is established to record vibration signals with four distinct
rotor frequencies (approximately 10, 20, 30, and 40 Hz), and
the average accuracy still reaches 93.19%, which is 14.38%
higher than conventional SVM algorithm. Similarly, a fault
diagnosis method based on the Pythagorean spatial pyramid
pooling (PSPP) CNN is proposed in [114] to enhance the clas-
sification accuracy during motor speed variations. Compared
to a spatial pyramid pooling layer that has been used in an
CNN, a PSPP layer is allocated in this work as a front layer
of CNN, and features obtained by the PSPP layer can be deliv-
ered to convolutional layers for further feature extraction.
According to the experiment result, this method has a higher
diagnosis accuracy at various rotating speeds compared to
other methods. In addition, the PSPP-CNN model trained by
data at certain rotating speeds can be transferred and used to
diagnose bearing fault at full working speed.

Since CNN excels at processing 2-D matrix data, such as
images in the field of computer vision, it generally requires
the transformation of 1-D time-domain vibration signal into
2-D signal to take full advantage of the strength that CNN
can offer. Aiming at simplifying this conversion process and
reducing the percentage of training data required due to the
expensiveness of acquiring a large amount of data through
experiments, an adaptive overlapping CNN (AOCNN) is pro-
posed in [115] to directly process the 1-D raw vibration
signal, and eliminate the shift variant problem of time-series
signal. Compared to the conventional CNN, its novelty lies in
the overlapping layer, which is used to sample the raw vibra-
tion signal. After the adaptive convolutional layer separates
these samples into segments, sparse filtering is employed in
the local layer to obtain local features. Classification results
reveal that AOCNNwith SF can identify ten health conditions
of the bearing with a 99.19% test accuracy when only 5%
samples are used as the training set, which is a significant
improvement considering most of the DL based methods
demand a minimum of 25% data allocated in the training set.
In addition, the test accuracy can further rise to 99.61% when
the test set data percentage increases from 5% to 20%.

Besides the CWRU dataset which contains only vibra-
tion signal, the Paderborn University bearing dataset [27],

as stated in Section II, includes synchronized stator current
and vibration signals. In addition, the Paderborn dataset also
incorporates both artificially induced bearing fault and real-
istic damages caused by accelerated lifetime tests. In [116],
the Paderborn dataset is used to train a deep inception net
with atrous convolution, which improves the average accu-
racy from 75% (best result of conventional data-driven meth-
ods) to 95% for diagnosing the real bearing faults when
trained only with the data generated from artificial bearing
damages. The ‘‘PRONOSTIA bearings accelerated lifetime
test dataset’’ [28], as introduced in Section II, is applied
in [117] with a deep convolution structure consisting of 8
layers: 2 convolutional, 2 pooling, 1 flat, and 3 nonlinear
transformation layers. Health indicators (HI) are later defined
based on the CNN output, and the classification result shows
the accuracy of HI predicted using CNN is superior than that
of self-organizing maps (SOM).

In addition to identifying damages on rolling element
bearings, the adoption of CNN on spindle bearings is also
discussed in [118], in which the wavelet packet energy of the
vibration signal is taken as input.

B. AUTO-ENCODERS
Auto-encoder is proposed in the 1980s as an unsupervised
pre-training method for ANNs [119], [120]. After decades
of evolution, the auto-encoder has become widely adopted
as an unsupervised feature learning method and a greedy
layer-wise neural network pre-training method. The train-
ing process of an auto-encoder with 1 hidden layer is
illustrated in Fig. 8 [121]. Specifically, an auto-encoder is
trained from an ANN, which consists of two parts: the
encoder and the decoder. The output of the encoder is
fed into the decoder as input. The ANN takes the mean
squared error between the original input and output as the
loss function, which essentially aims at generating the final
output by imitating the input. After this ANN is trained,
the decoder part is dropped while only the encoder part
is kept. Therefore, the output of the encoder is the fea-
ture representation that can be employed in the next-stage
classifier.

Among a large number of studies of applying auto-encoders
to bearing fault diagnosis [121]–[133], an early attempt
can be found in [122], where a 5-layer auto-encoder based
DNN is utilized to adaptively extract fault features from the
frequency spectrum and effectively classify the bearing health
condition. The classification accuracy reaches 99.6%, which
is significantly higher than the 70% of back-propagation
based neural networks (BPNN). In [123], an auto-encoder
based extreme learning machine (ELM) is employed, seeking
to integrate the automatic feature extraction capability of
auto-encoders and the high training speed of ELMs. The aver-
age accuracy of 99.83% compares favorably against other
traditional ML methods, including wavelet package decom-
position based SVM (WPD-SVM) (94.17%), EMD-SVM
(82.83%), WPD-ELM (86.75%) and EMD-ELM (81.55%).
More importantly, the required training time drops by around
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FIGURE 8. Process of training a one hidden layer auto-encoder [121].

60% to 70% using the same training and test data, thanks to
the adoption of ELM.

Compared to CNN, the denoising capability of con-
ventional auto-encoders is not prominent. Thus in [124],
a stacked denoising auto-encoder (SDA) is implemented,
which is suitable for deep architecture based robust feature
extraction on signals containing ambient noise under vary-
ing working conditions. This specific SDA consists of three
auto-encoders stacked together. To strike a balance between
classification performance and training speed, three hidden
layers with 100, 50, and 25 units respectively are employed.
The original CWRU bearing data are perturbed by a 15 dB
random noise to manually create a noisy background, and
data from multiple operating conditions are used as the test
set to evaluate its denoising capability at different speeds and
loads. The average classification result reveals the proposed
SDA is able to achieve a worst case accuracy of 91.79%,
which is 3% to 10% higher when compared to the conven-
tional SAE without the denoising capability, and classical
ML algorithms such as SVM and random forest (RF). Similar
to [124], another form of SDA is utilized in [125] with three
hidden layers of (500, 500, 500) units. Signals from the
CWRU dataset are mixed with different levels of artificially
induced noise in the time domain, and later transformed to
the frequency domain. The proposed method has a better
diagnosis accuracy than deep belief networks, particularly
with the added noises, where an average improvement of 7%
is achieved.

In [121], a locomotive bearing dataset developed at the
Northwestern Polytechnical University is used to validate
the performance of auto-encoders. Based on this dataset,
the authors adopted the maximum correntropy as the loss
function instead of the traditional mean squared error, and an
artificial fish-swarm algorithm (AFSA) is used to optimize
the key parameters in the loss function of the auto-encoder.
Results show that the customized 5-layer auto-encoder com-
posed of this maximum correntropy loss function and AFSA

algorithm outperforms standard auto-encoder by an accuracy
of 10% to 40% in a 5-class classification problem. Simi-
larly, a new deep AE constructed with DAE and contractive
auto-encoder (CAE) is applied to the locomotive bearing
dataset for enhancing the feature learning capability. A single
DAE is firstly used to learn low-layer features from the raw
vibration data, then multiple CAEs are used to learn deeper
features. In addition, locality preserving projection (LPP) is
also adopted to fuse these deep features to further improve the
quality of the learned features. The classification accuracy of
this mixed DAE-CAE-LPP approach is 91.90%, showcasing
the advantage over the standard DAE (84.60%), the stan-
dard CAE (85.10%), and the classical ML algorithms of
BPNN (49.70%) and SVM (57.60%). However, all of the
auto-encoder based methods are also 6 to 10 times more
time-consuming when compared to classical ML methods.

In addition. an aircraft-engine inter-shaft bearing vibration
dataset with the inner race, the outer race, and the rolling
element defect is adopted as the input data in [126], where
a new AE based on Gaussian radial basis kernel function is
employed to enhance the feature learning capability. Later,
a stacked AE is developed using this new AE and multi-
ple conventional AEs. An average accuracy of 86.75% is
achieved, which is much better compared to the standard
SAE (44.90%) and the standard DBN (19.65%). Moreover,
the importance of the proposed Gaussian radial basis kernel
function is showcased in a comparative study. When the
Gaussian kernel function is changed to a polynomial kernel
function (PK) and a power exponent kernel function (PEK),
the accuracy would drop to 24.25% and 65.55%, respectively.

Similar to the case of CNN, many variations of SAE
are also employed in the last two years to tackle the bear-
ing fault diagnosis problem [127]–[133] using the popular
CWRU dataset, and all of which have achieved some form
of performance elevation when compared to the traditional
SAE. In [127], an ensemble deep auto-encoder consisting
of a series of auto-encoders (AE) based on different acti-
vation functions is proposed for unsupervised feature learn-
ing from the measured vibration signal. Later, a decision
ensemble strategy is designed to merge the classification
result from each individual AE and ensure an accurate and
stable diagnosis result. An average classification accuracy
of 99.15% is achieved, which performs better than many
classical ML methods including BPNN (88.22%), SVM
(90.81%), and RF (92.07%) based on a manually selected
feature of 24 dimensions. Similarly, by altering the activation
function, a deep wavelet auto-encoder (DWAE) with extreme
learning machine (ELM) is implemented in [128], where the
wavelet function is employed as the nonlinear activation func-
tion, enabling wavelet auto-encoders (WAE) to effectively
capture signal characteristics. Then a DWAE with multiple
WAEs is constructed to enhance the unsupervised feature
learning ability, and ELM is adopted as the output classifier.
Based on the final result, this method (95.20%) not only out-
performs the classical ML methods such as BPNN (85.43%)
and SVM (87.97%), but also some standard DL algorithms,
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including the standard DAE with Softmax (89.70%) and the
standard DAE with ELM (89.93%).

Considering the relatively large data size required to
train deep neural nets, a 4-layer DNN with stacked sparse
auto-encoder is established in [129] with a compression ratio
of 70%, indicating only 30% of the original data are needed
to train the proposed model. The DNN has 720 input nodes,
200 and 60 nodes in the first and the second hidden layer,
and 7 nodes in the output layer, the number of which depends
on the number of fault conditions. A nonlinear projection
is performed to compress the vibration data and perform
adaptive feature extraction in the transformed space, and the
accuracy of the proposed method reaches 97.47%, which is
8% higher than the SVM, 60% higher than a three-layer
ANN, and 46% higher than a multi-layer ANN. [130] sum-
marizes two limitations of the conventional SAE. Firstly,
an SAE tends to extract similar or redundant features that
increase the complexity rather than the accuracy of themodel.
Secondly, the learned features may have shift variant prop-
erties. To overcome these issues, a new SAE-LCN (local
connection network) is proposed, which consists of the input
layer, the local layer, the feature layer, and the output layer.
Specifically, this method learns features from the input signal
locally in the local layer, then obtains shift-invariant features
in the feature layer, and finally recognizes the bearing health
condition in the output layer for a 10-class classification
problem. The average accuracy is reported to reach 99.92%,
which is 1% to 5% higher than EMD, ensemble NN, and
DL based methods. Similarly, a diagnosis model using SAE
and incremental support vector machines is implemented
in [131], which is tested for online diagnosis purposes.

Besides the most commonly used Softmax classifiers in
the output layer, the Gath-Geva (GG) clustering algorithm is
implemented in [132], which induces a fuzzy maximum like-
lihood estimation (FMLE) of the distance norm to determine
the likelihood of a sample belonging to each cluster. While an
8-layer SDAE is still used to extract the useful features from
the vibration signal, GG is deployed to identify the different
fault types. The worst case classification accuracy is 93.3%,
outperforming the classical EMD based feature extraction
schemes by almost 10%.

To further reduce the DL based model complexity, another
bearing fault diagnosis method based on a fully-connected
winner-take-all auto-encoder is proposed in [133], in which
the model explicitly imposes lifetime sparsity on the encoded
features by keeping only k% largest activations of each neu-
ron for all of the samples in a mini-batch. A soft voting
method is implemented to increase the classification accuracy
and stability by aggregating the prediction result of each sig-
nal segment sliced by a sliding window. A customized dataset
is generated to test the diagnosis performance under a noisy
environment by adding white Gaussian noise to the original
CWRU dataset. The experimental result demonstrates that
with a simple two-layer network, the proposed method not
only handles the bearing fault detection with a higher pre-
cision at normal conditions, but also demonstrates a better

FIGURE 9. Architecture of DBN [135].

anti-noise capability when compared to some deeper and
more complex models, such as a deep CNN.

C. DEEP BELIEF NETWORK (DBN)
In DL, a deep belief network (DBN) can be viewed as
a composition of simple unsupervised networks such as
restricted Boltzmann machines or auto-encoders, where each
sub-network’s hidden layer serves as the visible layer for
the next, as illustrated by different colored boxes in Fig. 9.
An RBM is an undirected generative energy-based model
with a ‘‘visible’’ input layer, a hidden layer, and connections
in between, but not within layers. This composition leads to
a fast layer-by-layer unsupervised training procedure, where
contrastive divergence is applied to each sub-network in turn,
starting from the ‘‘lowest’’ pair of layers in the architecture.

This greedy layer-by-layer training process has led to one
of the first effective DL algorithms [134]. There are many
attractive implementations of DBNs in real-life applications
such as natural language understanding and drug discovery;
and its first application on bearing fault diagnosis was pub-
lished in 2017 [135].

In [135], a multi-sensor vibration data fusion technique is
implemented to fuse the time-domain and frequency-domain
features extracted using multiple 2-layer SAEs. Then a
3-layer DBN is used for classification purposes. Validation is
performed on the vibration data collected at different speeds,
and the 97.82% accuracy demonstrates that the proposed
method can effectively identify a bearing fault at multiple
operating conditions. The feature visualization using t-SNE
reveals that this multi-SAE based feature fusion outperforms
other methods with only one SAE or without fusion. In [136],
a stochastic convolutional DBN is implemented by means
of stochastic kernels and averaging, and an unsupervised
CNN is built to extract 47 features. Later a 2-layer DBN is
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FIGURE 10. Architecture of (a) RNN, and (b) RNN over a time step [143].

implemented with (28, 14) nodes, 5 kernels in each layer,
and 1 pooling layer without overlapping. Finally, a Softmax
layer is used for classification, and the average accuracy
exceeds 95%.

Many DBN papers also take the CWRU bearing dataset
as the input data [137]–[139] due to its popularity. For
example, an adaptive DBN and dual-tree complex wavelet
packet (DTCWPT) is proposed in [137]. The DTCWPT
first prepossesses the vibration signal to generate a feature
set with 9×8 feature parameters. Then a 3-level wavelet
decomposition of the signal is performed using the order
5 Daubechies wavelet as the basis function. Then a 5-layer
adaptive DBN of the (72, 400, 250, 100, 16) structure is
used for bearing fault classification. The average accuracy
is 94.38%, which is much higher compared to the classi-
cal ML methods such as ANN (63.13%), GRNN (69.38%),
and SVM (66.88%) using the same training and test data.
In [139], data from two accelerometers mounted on the load
end and fan end respectively are processed by multiple DBNs
for feature extraction; then faulty conditions based on the
extracted features are determined by Softmax; and the final
health condition is fused byD-S evidence theory. An accuracy
of 98.8% is accomplished considering the load variation from
1 to 3 hp, a significant improvement when compared to
the conventional SAE and CNN. Similar to this D-S theory
based output fusion method [138], a 4-layer DBN of the
(400, 200, 100, 10) structure with different hyper-parameters
coupled with ensemble learning is implemented in [139].
Specifically, an improved ensemble method is used to acquire
the weight matrix for each DBN, and the final diagnosis
result is formulated from each DBN based on their weights.
The average accuracy of 96.95% is better than that of
a single DBN of different weights (mostly around 80%),
as well as a simple voting ensemble scheme based DBN
(91.21%).

Besides the CWRU bearing dataset, many other datasets
have been used to evaluate the performance of DBN on
bearing fault diagnostics. In [140], a convolutional DBN
constructed with convolutional RBMs is applied on the
locomotive bearing vibration, where an auto-encoder is
firstly used to compress the data and reduce its dimension.

Without any feature extraction process, the compressed data
are divided into training samples and test samples to be fed
into the convolutional DBN. The convolutional DBN based
on Gaussian visible units is able to learn the representative
features, overcoming the problem of conventional RBMs
that all visible units must be related to all hidden units by
different weights. Lastly, a Softmax layer is used for classi-
fication and obtains an accuracy of 97.44%, which compares
favorably against other DL methods, such as the denoising
auto-encoder (90.76%), the standard DBN (88.10%), and the
standard CNN (91.24%), using the same classifier and raw
data. In [141], a bearing dataset directly obtained from power
plants is used to evaluate the performance of a 5-hidden-
layer DBN with (512, 2048, 1024, 2048, 512) nodes in each
layer. The dataset contains vibration signals collected from
various scaled applications, such as small testbeds and real
field deployments. The unsupervised feature extraction is
performed by DBN, and the fault classifier is designed using
SOM which achieves a 97.13% accuracy.

DBN has also been applied to bearing RUL prediction.
In [142], a DBN-feed-forward neural network (FNN) is
applied to perform automatic feature learning with DBN and
RUL prediction with FNN. Two accelerometers are mounted
on the bearing housing, in directions perpendicular to the
shaft, and the data is collected with a 102.4 kHz sampling
frequency for a duration of 2 seconds. Experimental results
demonstrate the proposed DBN based approach can accu-
rately predict the true RUL as the bearing approaches the
point of failure, and the accuracy of the predictions tends to
increase and converge over time.

D. RECURRENT NEURAL NETWORK (RNN)
Different from a feed-forward neural network, a recurrent
neural network (RNN) processes the input data in a recur-
rent behavior, and its architecture is shown in Fig. 10. With
a flow path going from the hidden layer to itself, when
unrolled in sequence, it can be viewed as a feed-forward
neural network in the input sequence. As a sequential model,
it can capture and model sequential relationships in sequen-
tial data or time-series data. However, often trained with
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FIGURE 11. Architecture of GAN [148].

back-propagation through time, RNN has the notorious gra-
dient vanishing/exploding issue stemmed from its nature.
Although the RNN is proposed as early as the 1980s, it has
limited applications due to this reason, until the birth of long
short-term memory (LSTM) in 1997. Specifically, LSTM is
augmented by adding recurrent gates called ‘‘forget’’ gates.
Designed for overcoming the gradient vanishing/exploding
issue, LSTM has shown an astonishing capability in memo-
rizing and modeling the long-term dependency in data, and
therefore taken a dominant role in time-series and textual
data analysis. So far, it has received great successes in the
field of speech recognition, handwriting recognition, natural
language processing, video analysis, etc.

One of the earliest applications of RNN on bearing fault
diagnostics is reported in 2015 [143], where fault features
are firstly extracted using the discrete wavelet transform and
later selected based on the orthogonal fuzzy neighbourhood
discriminative analysis. These features are then fed into an
RNN to perform bearing fault detection. The experimental
result has shown that the proposed scheme based on RNN
is capable of accurately detecting and classifying the bear-
ing fault. Another RNN based health indicator (RNN-HI)
is proposed in [144] to predict the RUL of bearings with
LSTM cells used in RNN layers. Along with time-frequency
features, the related-similarity (RS) feature calculates the
similarity between the currently monitored data and the data
at an initial operation point. After performing a correlation
and monotonicity-metrics-based feature selection process,
the selected features are transferred to an RNN network to
predict the bearing HI, fromwhich the RUL can be estimated.
With the input dataset collected from generator bearings of
wind turbines, the proposed RNN-HI is demonstrated to offer
better performance than an SOM based method.

In addition, a methodology of a combined 1-D CNN and
LSTM to classify bearing fault types is presented in [145],
where the entire architecture is composed of a 1-DCNN layer,
a max pooling layer, a LSTM layer, and a Softmax layer as
the top classifier. The system input is the raw signal without
any pre-processing, and the best test accuracy of different
configurations reaches 99.6%. A more recent work employ-
ing a deep recurrent neural network (DRNN) is proposed
in [146] with stacked recurrent hidden layers and LSTM

units. A loss function with mean squared errors is introduced
and the stochastic gradient descent (SGD) method is used
as the optimizer. Besides, an adaptive learning rate is also
adopted to improve the training performance. The average
accuracy on the test set using the proposed method is 94.75%
and 96.53% at 1,750 and 1,797 rpm respectively.

E. GENERATIVE ADVERSARIAL NETWORK (GAN)
Generative Adversarial Network (GAN) was proposed by
Goodfellow et al. [147] in 2014 and rapidly became one of
the most exciting breakthroughs in the field of deep learn-
ing. A GAN is composed of two parts: the generator FG
and the discriminator FD, as illustrated in Fig. 11 [148].
The two parts are competing with each other in a way
that the generator FG is trying to confuse the discriminator
FD, and FD is trying to distinguish samples generated by
FG from samples in the original dataset. Established as a
zero-sum game framework, both FG and FD are competing
to obtain an increasingly stronger capability of imitating
the original data samples and discriminating in an iterative
manner.

A GAN is mainly designed for generative purposes to
generate samples or functions as generation modules. Despite
its relatively short history, GAN has been rapidly applied to
the field of bearing fault diagnostics. One of the earliest pub-
lications appears in 2017 [149], which aims at addressing the
class imbalance issue using GAN. In addition, GAN is also
combined with the adaptive synthetic sampling (ADASYN)
approach to achieve meaningful oversampling when the orig-
inal data samples are sparse. Comparison against standard
oversampling techniques shows the superiority of adopt-
ing GAN. In [150], A novel approach for fault diagnosis
based on deep convolution GAN (DCGAN) with imbal-
anced dataset is proposed. A new DCGAN model [151] with
4 convolutional layers serving as the discriminator and the
generator is designed and applied on raw and imbalanced
vibration signals. After performing data balancing using the
DCGAN model, statistical features based on time-domain
and frequency-domain data are extracted to train a SVM
classifier for bearing fault classification. Both the training and
the test accuracy of the proposed DCGAN method demon-
strate better performance than other class balancing methods,
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including random over-sampling, random under-sampling,
and synthetic minority over-sampling technique.

We can find a number of research works in the field of
bearing fault diagnostics employing GAN and its variants for
data augmentation purposes due to their excellent generative
capability. Besides that, there are also someworks usingGAN
as the main framework to realize classification tasks, which
heavily rely on the assumption that the data structure in latent
space, although without labels, contains information that can
be used to infer the labels.When aGAN is learning from unla-
beled samples in a unsupervised manner, it can additionally
learn the data distribution in latent space that distinguishes
the data’s unknown classes. In this way, the discriminator
of GAN can be refined as a classifier assisted by some
other modules in the framework. This class of GAN-centered
frameworks has shown superiority in semi-supervised areas,
especially in applications where labeled data are expensive
and scarce.

In [152], for example, the authors proposed a novel
GAN framework referred to as the categorical adversar-
ial auto-encoder (CatAAE), which automatically trains an
auto-encoder through an adversarial training process, and
imposes a prior distribution on the latent coding space. In the
next step, a classifier tries to cluster the input examples by
balancing themutual information between examples and their
predicted categorical class distributions. The latent coding
space and the training process are presented to investigate the
advantage of the proposed model. Experiments at different
signal-to-noise ratios (SNRs) and different motor load levels
have indicated the preponderance of the proposed CatAAE
in learning useful characteristics when compared to the cat-
egorical generative adversarial networks (CatGAN) and the
K-means algorithm.

Since many real-world applications do not comply with the
common assumption that the training set and the test set have
the same distribution, due to the fact that the operating con-
dition may vary frequently. Similar to [152] and inspired by
GAN, a new adversarial adaptive 1-D CNN model (A2CNN)
is proposed in [153] to address this problem. Experiments
show that the A2CNN has a strong fault-discriminative and
domain invariant capacity, and therefore its prediction can
achieve a high accuracy even at different operating condi-
tions. Other works employing GAN to tackle the data imbal-
ance issue can be found in [154] and [155].

F. DEEP LEARNING BASED TRANSFER LEARNING
The success of ML and DL based bearing fault diagnos-
tics relies on a massive amount of heavily annotated data.
However, this is generally not feasible in most real-world
applications due to 1) the dangerous and serious conse-
quences when machines are running at faulty conditions;
2) the potential time-consuming degradation process before
the desired failure appears; and 3) the possibility of a large
number of operating conditions with different speeds and
loads. With DL methods trained with either the publicly
available datasets or self-collected datasets sampled in a

laboratory environment, the classification accuracy will nat-
urally deteriorate when determining the presence of bearing
fault in a real-world application. Even if the data collected
from the same machines and bearings are used, certain level
of distribution discrepancy inevitably exists between features
of the training and test sets if they were at different loads or
speeds. As a result, the performance still suffers.

Designed to tackle this practical and widely existing
issue in numerous applications, transfer learning has aroused
extensive attention in the machine learning community, and
various transfer learning frameworks are proposed based on
classical ML algorithms [32], [33], [156], [157]. A popular
method among all types of transfer learning approaches is
domain adaptation. By exploring domain-invariant features,
domain adaptation establishes the knowledge transfer from
the source domain to the target domain [158]. Therefore,
with labeled data from the source domain and unlabeled data
from the target domain, the distribution discrepancy between
the two domains can be mitigated by domain adaptation
algorithms. Over the last few years, an integration of deep
learning and transfer learning approaches has been prevalent.
Specially designed domain adaptation modules are combined
with deep learning architectures to endow the domain transfer
ability while maintaining the extraordinary automatic feature
learning ability [111], [158]–[161].

Specifically, a domain adaptation module is proposed
in [159] to facilitate a 1-D CNN to learn domain-invariant
features by maximizing the domain recognition error and
minimizing the probability distribution distance. To vali-
date the efficacy of domain adaptation, 3 datasets including
CWRU dataset, IMS dataset, and railway locomotive bearing
dataset are employed. By training on one of the three datasets
and testing on another one, an average accuracy of 86.3%
is achieved, which has surpassed the conventional CNN
of 53.1%, and two existing domain adaptation frameworks
of 75.6% [156] and 78.8% [157].

A novel framework WDCNN (deep CNN with wide
first-layer kernels) combined with adaptive batch normal-
ization (AdaBN) was proposed in [160]. Taking the raw
vibration signal as input, the new framework is based on a
CNN architecture with wide kernels (64) in the first convo-
lutional layer to better suppress the high frequency noise.
Then domain adaptation is implemented by extracting the
mean and variance of the target domain signals and passing
them to AdaBN. The CWRU dataset is used to conduct
cross-domain experiments by training the proposedWDCNN
in one working condition and testing in another one. An aver-
age accuracy of 90.0% is achieved, which is further improved
to 95.9% by mixing with AdaBN, outperforming the conven-
tional FFT-DNN method of 78.1%. When tested in a noisy
environment (with additive white Gaussian noise), WDCNN
with AdaBN achieves a 92.65% accuracy under a −4 dB
SNR, in comparison to 66.95% without AdaBN.

Deep generative network can also be combined with
domain adaptation to produce a novel framework. In [161],
a 2-stage structure is proposed. In the first stage, an 8-layer
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CNN component including 3 convolutional layers with basic
classifiers is trained as the feature extractor to optimize the
classification error under source supervision. Then Nc − 1
(Nc is the number of classes) CNN components, each of
which consists of 3 convolutional layers and 3 dropout layers,
are trained to minimize the maximum mean discrepancy.
In the second stage, with the feature extractor trained in the
first stage, a cross-domain classifier is trained to generate the
final diagnosis result.

G. OTHER VARIANTS
There are also many other DL variants implemented to cope
with some of the open issues in the field of bearing fault
diagnostics. Some of the selected variants are summarized as
follows.

1) VARIATIONAL AUTOENCODERS
Proposed byKingma et al. [162], the variational auto-encoder
(VAE) is different from other autoencoder variants in that
it uses the variational inference to generate a latent repre-
sentation of the data, and impose a distribution over the
latent variables and the data itself. Compared to some general
class DL algorithms, the implementation of VAE in bearing
fault detection is a relatively new domain. A representative
work of such is presented in [163], where a fully unsu-
pervised deep VAE-based approach is proposed to tackle
the high dimensionality of data used for failure diagnosis.
Specifically, the VAE is able to extract discriminative features
from the high-dimensional input data to form their corre-
sponding low-dimensional latent space representations. The
experimental results show that the VAE is a more competent
and promising tool for dimensionality reduction than PCA.
Besides discriminative feature learning, it is also worthwhile
exploring its generative capabilities for fault diagnosis in the
context of semi-supervised learning.

2) CAPSULE NEURAL NETWORKS
The capsule network is a new deep learning architecture pro-
posed by Hinton et al. in [164], which has a strong capability
to identify the position and orientation relationship of features
through the capsule module. Meanwhile, its relatively simple
structure with a limited number of parameters significantly
promotes the model generalization.

For instance, in [165], a capsule network with inception
block is proposed aiming at improving the model general-
ization capability. This goal is achieved by employing an
inception-module-augmented capsule network to adopt dif-
ferent working conditions, upon taking the two-dimensional
short-time Fourier transform graph of the raw data as input.
Besides, a regression branch is added to predict the size of
the bearing defect. The experiments showcase better domain
adaptation performance than state-of-the-art algorithmswhen
training and testing on bearing fault data collected at differ-
ent work loads. The authors in [166] also proposes a deep
capsule network with stochastic delta rule (DCN-SDR) for
bearing fault diagnosis under varying working conditions and
noisy environment. The network first receives raw temporal

signal as input, and then extracts noise-immune represen-
tative features via incorporating a noise injection module,
which is a regularization method based on SDR. The superi-
ority of the proposed architecture is verified through exten-
sive experiments and the subsequent feature visualization
via t-SNE. Similarly, a capsule network combined with the
Xception module (XCN), an extreme version of inception
module, is developed in [167], aiming at improving the clas-
sification accuracy of the proposed variant of the capsule
network. Trained on ideal laboratory conditions and tested
on an actual system setup, the proposed diagnostic model
delivers improved classification accuracy, robustness, and
training speed.

3) SIAMESE NEURAL NETWORKS
Originally proposed by Bromley and LeCun [168] in the
early 1990s, the siamese neural network is designed to
solve signature verification as an image matching problem.
A siamese neural network consists of twin networks, which
compares distinct inputs and rank similarities between them.
With a growing interest in few-shot learning over the recent
years due to insufficient data, Koch et al. [169] implemented
the siamese neural network for one-shot image recognition,
which inspired the later work of applying this similar siamese
network structure to bearing fault diagnostics [170]. Specif-
ically, in the specific siamese network model in [170], two
identical networks are set up to take in sample pairs of the
same or different categories, which can measure the distance
of the two feature vector outputs to determine their similarity.
Compared to the WDCNN benchmark with a limited number
of training samples below 200, the experimental result reveals
an approximately 5% increase of accuracy for the siamese
net based one-shot learning, and a 10% increase for five-shot
learning.

4) OTHERS
There are also a number of other variants for bearing fault
diagnostics, either based on novel DL frameworks or mixture
of multiple DL methods listed above. For example, in [171],
a new large memory storage retrieval (LAMSTAR) neural
network is proposed with 1 input layer, 40 input SOM mod-
ules as hidden layers, and 1 decision SOM module as the
output layer. More accurate classification results compared
to the conventional CNN are reported at various operating
conditions, especially at low speeds. In [172], the DBN and
SAE are applied simultaneously to identify the presence
of a bearing fault. Other examples include a mixture of
CNN and DBN [173], a deep residual network (DRN) [174],
[175], a deep stack network [176], a RNN based auto-
encoders [177], sparse filtering [178], etc.

V. DISCUSSIONS ON DEEP LEARNING ALGORITHMS FOR
BEARING FAULT DIAGNOSIS
A. AUTOMATED FEATURE EXTRACTION AND SELECTION
As opposed to feature engineering of ML algorithms, which
manually selects features that preserve the discriminative
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FIGURE 12. Feature visualization via t-SNE: feature representations for all test signals extracted from raw signal, six
convolutional layers and the last fully connected layer respectively [111].

characteristics of the data, the DL based algorithms can learn
the discriminative feature representation directly from input
data in an end-to-end manner. The DL based approach does
not require human expertise or prior knowledge of the prob-
lem, and is therefore advantageous in bearing fault diagnosis,
where it is sometimes challenging to determine the fault
characteristic features accurately. Specifically, DL methods
perform feature learning from raw data and classification in
a simultaneous and intertwined manner, as illustrated in the
cluster visualization results of multiple convolutional layers
in Fig. 12. A glimpse of the clustering effect can be observed
in convolutional layer C2; and it becomes increasingly appar-
ent in later convolutional layers. For comparison reasons,
manyDL based papers also present results using classicalML
methods with human engineered features for bearing fault
detection. The majority of DL based methods are reported
to outperform traditional ML methods, especially in the
presence of external noise and frequent change of operating
conditions.

B. COMPARISON OF DIFFERENT DL ALGORITHMS FOR
BEARING FAULT DIAGNOSTICS
Thus far, several types DNN architectures and their appli-
cations to bearing fault diagnostics have been extensively
discussed, and TABLE 2 briefly describes the pros and cons
of the commonly used deep learning approaches in the field
of bearing fault diagnostics. The decision to choose which

specific DL algorithm or which specific variant can be cus-
tomized based on the specific setup environment, the data
size, and the number and type of sensors installed. Details
on algorithm customization and recommendation will be pro-
vided in Section VI.

C. COMPARISON OF DL ALGORITHM PERFORMANCE
USING THE CWRU DATASET
A systematic comparison of the classification accuracy of dif-
ferent DL algorithms employing the CWRUbearing dataset is
presented in TABLE 3. As can be readily observed, the min-
imum number of hidden layers for all of the networks is 2,
indicating the complete network has at least 4 layers incor-
porating the input and output layers. The maximum hidden
layer size can be as large as 13 in [113], representing a
very deep network that requires more time in the training
process. The selection criterion for the number of hidden
layers is to count the layers that are part of the model’s
architecture, while excluding the input and the output layer.
Based on this criterion, in a CNN we count each convolu-
tional layer and each pooling layer as an effective hidden
layer, and disregard any of the dropout layer, since it is a
regularization technique that only affects the training process
(during evaluation, it is not active, otherwise the weights
of the network will be larger than normal). For a GAN,
we count all of the hidden layers in both the generator and the
discriminator.
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TABLE 2. A summary of different deep learning architecture.
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TABLE 3. Comparison of classification accuracy on case western reserve university bearing dataset with different DL algorithms.

The test accuracy of all of the DL algorithms are above
95%, which validates the feasibility and effectiveness of
applying deep learning to bearing fault diagnostics. However,
it is worthwhile to mention that these specific values of test
accuracy cannot be used as the sole indicator to compare
the effectiveness of different algorithms for the following
reasons:

1) Generalization: Some of the DL methods with an
astonishing accuracy over 99% are generally applied
on a very specific dataset at a fixed operating con-
dition, i.e., when the motor speed is 1,797 rpm and
the load is 2 hp. However, this accuracy may suffer
significantly under the influence of noise and variation
of the motor’s speed and load, which unfortunately
can be a common issue in practical applications. This
is in spite of the relatively strong robustness to noise
disturbances of the original DL algorithms (CNN, SAE,
DBN, etc.), and their capabilities to learn fault fea-
tures through a general-purpose learning architecture.
It is also reported in [106] that the conventional CNN
has a better built-in denoising mechanism compared
to other classical DL algorithms such as AE. Due to
this limitation, some papers applied the stacked denois-
ing AE (SDAE) [124], [125], [132] to increase AE’s

noise resilience under a small SNR, i.e., SNR = 5
or 10.

2) Unbalanced Sampling: Regarding the selection of
training samples from the CWRU dataset, many papers
did not guarantee a balanced sampling, which means
the ratio of data samples selected from the healthy
condition and the faulty condition is not close to 1:1.
In case of a significant unbalance, accuracy should
not be used as the only metric to evaluate an algo-
rithm [153]. Compared with accuracy, other metrics,
such as precision, recall and F1-Score, should be intro-
duced to provide more details for evaluating the reli-
ability of a fault identification network. In addition,
if the majority of training set are data from the healthy
condition, many of the learnt features cannot fully
indicate various fault conditions. Therefore, provided
that the training data is highly unbalanced, it would be
very challenging to apply the DL classifier trained with
laboratory data to identify a bearing fault in practical
applications, even if the DL framework adopts transfer
learning with domain adaptations.

3) Randomness: Even when these DL methods are using
the same dataset to perform classification, the percent-
age of training data and test data can be different, which
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unavoidably affects the trustability of the comparison
between different approaches.What’s more, even if this
data distribution is identical, the training and test data
might be randomly selected from the CWRU bearing
dataset. Therefore this comparison is not performed on
the common ground, since the classification accuracy
is subject to change even with the same algorithm due
to the randomness in selecting the training and the test
set.

4) Accuracy Saturation: Most of the existing DL algo-
rithms can achieve an excellent classification accuracy
of over 95% using the CWRU dataset, even with the
classical CNNwithout any add-on architectures, which
indicates that this dataset contains relatively simple
features that can be easily extracted by a variety of DL
methods. In fact, all of the bearing defects in the CWRU
dataset are manually drilled or engraved, which are
much easier to detect than the realistic bearing spalls
or general roughness due to aging. Therefore, various
perturbations adding on the original dataset needs to
be performed to evaluate more advanced functionali-
ties of DL algorithms, i.e., the CWRU data combined
with random noise to test an algorithm’s denoising
capability.

All of the factors above would make the classification
accuracy of different DL algorithms less convincing.

VI. SUGGESTIONS, CHALLENGES, AND FUTURE WORK
DIRECTIONS
A. RECOMMENDATIONS AND SUGGESTIONS
The successful implementation of machine learning and
deep learning algorithms on bearing fault diagnostics can
be attributed to the strong correlations among features that
follow the law of physics. For engineers and researchers con-
sidering applying ML or DL methods to solve their bearing
detection problems at hand, the authors suggest the following
sequences to make the best algorithm selection.

1) Setup Environment: The first thing we recommend is
to thoroughly examine the working environment and
all of the possible operating conditions, for example,
indoor or outdoor, operating at a fixed operating point
or multiple speeds and loads. For the simplest case
with an indoor and a single operating point setup,
some classical ML methods or even the frequency
based analytical model should suffice. For applications
that are more prone to external disturbances or having
multiple operating points, such as motors fed by VFD
converters in electric vehicles, more advanced deep
learning approaches should be employed. Specifically,
when theworkbench is exposed to a noisy environment,
which induces a relatively small SNR, certain denois-
ing blocks and extra hidden layers should be added to
increase the noise-resiliency and robustness of the deep
neural net.

2) Sensors: Then we would need to check the number and
type of sensors to be mounted close to the bearing.
For the traditional frequency based and classical ML
methods, one or two vibrations sensors mounted close
to the bearing should be sufficient. For deep learning
based approaches, due to the fact that many algorithms
such as CNN are mainly developed for computer vision
to handle 2-D image data, multiple 1-D time-series
data obtained by multiple sensors in the bearing setup
need to be stacked together to form this 2-D data.
Alternatively, some prepossessing functions, such as
the wavelet packet decomposition (WPD), need to be
applied before the data is transferred to the deep neural
net. Therefore, it would be better to have more than two
vibration sensors installed at the same time. In addition,
other types of sensors such as acoustic emission and
stator current can be installed to form a multi-physics
dataset to further improve the accuracy and robustness
of the proposed classifier, especially in the midst of
frequent and abrupt shifts of operating conditions.

3) Data Size: If the size of the collected dataset is not
sufficient to train a deep learning algorithmwith a good
level of generalization, specific algorithms should be
selected that canmake themost out of the data and com-
puting resources available. For example, dataset aug-
mentation techniques such as GAN, and data random
sampling techniques with replacement such as Boost-
rapping, can be readily implemented. Before actually
collecting data from the bearing setup, it is advised to
interpret the required sample size beforehand [179] by
considering how accurate the classification result needs
to be. With a small labeled dataset, another promising
routine is to leverage the unlabeled dataset, if possible,
and apply the semi-supervised learning paradigm by
combining the supervised and unsupervised learning
approaches.

B. CURRENT CHALLENGES
Despite the extensive effort and the large number of academic
papers devoted to this field, there are still some major chal-
lenges that need to be tackled to successfully apply ML and
DL algorithms to real-world applications:

1) Knowledge Transfer From Laboratories to the Real
World: The majority of work included in this review
is using publicly available dataset collected from lab-
oratories setups to train their customized ML or DL
algorithms. However, it would be ideal to be able to
transfer the learned network structure and parameters
to detect bearing faults from previously unseen setups,
and a very promising example would be learning to pre-
dict naturally occuring bearing faults in the real-world
by only using data collected from artificial faults in
the lab. However, there are still many technique details
that need to be tackled to accomplish this ambitious
goal.
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2) Limited Labels: For bearing fault detection, it is often
times much easier to collect a large amount of data
than to accurately obtain their corresponding labels,
and this is especially the case for those faults that
evolved naturally over time. Specifically, it is not easy
to determine precisely when the first trace of a fault
shows up and how long it lasts at the incipient stage.

3) Data Imbalance: In certain occasions it can be chal-
lenging or expensive to collect a sufficient amount of
data at various bearing faulty conditions to effectively
train DL algorithms, while the vast majority of data
collected would be at the healthy condition, which in
fact does not significantly contribute to training an
effective and robust bearing fault classifier.

4) Noisy Data: Most of the existing work employing DL
techniques for bearing fault diagnosis relies on vibra-
tion data collected from accelerometers in a laboratory
environment. However, in real industrial scenarios such
as wind turbines, a large amount of environmental
vibration, resonance, or noise may take place. There-
fore, it is still an open question if these DL algorithms,
while being trained using the vibration data alone, can
still deliver satisfactory fault detection performances if
the collected data is contaminated by noise.

C. FUTURE WORK DIRECTIONS
Regarding future research directions, the authors suggest the
following methodologies and algorithms that might be help-
ful to address the aforementioned challenges:

1) Transfer Learning: Transfer learning is a promis-
ing technique to transfer the knowledge and experi-
ence learned from existing datasets to help identify
unforeseen bearing fault conditions at different setups
in real-world applications. Typical transfer learning
techniques include domain randomization and domain
adaptation, which can effectively increase the diversity
of the source domain (existing datasets), and help facil-
itate faster learning and better performance in the target
domain (real-world cases).

2) Semi-Supervised Learning: To alleviate the problem
of ‘‘limited labels’’, semi-supervised learning can be
utilized to make full use of the limited labeled data and
the massive unlabeled data. One potential routine is to
employ the variational encoder based deep generative
model perform variational inference on data with lim-
ited labels.

3) Data Augmentation: Data augmentation techniques
such as GAN can be introduced solve the ‘‘data imbal-
ance and scarcity’’ issue by generating more ‘‘fake’’
faulty data to facilitate the training process of DL
algorithms. Despite this promising feature, it has been
reported in [154] that the accuracy actually declined
for some classifiers after incorporating the generated
data into the training process. The authors in [154]
thus concludes that ‘‘the quality of generated spectrum
samples’’ generated by GAN ‘‘isn’t good enough to

provide auxiliary information’’. Therefore, it would be
interesting to explore more powerful generative mod-
els, such as BigGAN, to address this open issue.

4) Few-Shot Learning: Another way to address the ‘‘data
imbalance and scarcity’’ problem is to adapt few-shot
learning algorithms to achieve a reasonable classifica-
tion accuracy using a substantially smaller amount of
data. This can be combined with transfer learning and
domain adaptation to facilitate the use of deep learning
for bearing fault diagnostics at the industry level.

5) Explainability: Rigorous interpretations of DL in gen-
eral is not well developed as compared with classi-
cal ML methods. Several references, such as [160],
and [159], attempted to visualize the learnt CNN kernel
to interpret its physical meanings. These studies have
provided intuitions on the explainability of DL, but
more in-depth investigations and their adaptability to
bearing fault diagnostics are necessary.

6) Sensor Fusion:To solve the potential problem of‘‘noisy
data’’, it might be worthwhile to deploy other types
of sensors, such as the load cell, the current sensor,
and the acoustic emission sensor, etc., and apply sensor
fusion techniques to synthesize these data and improve
the robustness of bearing fault diagnosis. Specifically,
the use of acoustic sensors should be advocates since it
is reported in [171] that in comparison with vibration
signals, acoustic emission signals ‘‘have certain advan-
tages in detecting incipient faults, capturing and rep-
resenting’’. Some existing work on applying acoustic
signals to train ML and DL algorithms can be found
in [58] and [171], respectively.

VII. CONCLUSION
In this paper, a systematic review is presented on the exist-
ing literature employing deep learning algorithms to bear-
ing fault diagnostics. Special emphasis is placed on deep
learning based approaches that has spurred the interest of the
research community over the past five years. It is demon-
strated that, despite the fact that deep learning algorithms
require a large dataset to train, they can automatically perform
adaptive feature extractions on the bearing data without any
prior expertise on fault characteristic frequencies or operating
conditions, making them promising candidates to perform
real-time bearing fault diagnostics. A comparative study is
also conducted comparing the performance of many DL algo-
rithm variants using the common CWRU bearing dataset.
Finally, detailed recommendations and suggestions are pro-
vided in regards to choosing the most appropriate type of DL
algorithm for specific application scenarios. Future research
directions are also discussed to better facilitate the transition
of DL algorithms from laboratory tests to real-world applica-
tions.
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