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Figure 1: Multi-modal generation tasks with different modality pairs. (a) Convert text descriptions into images [20]. (b) Gen-
erate audio from videos and generate videos from audio [5]. (c) The proposed accelerometer data generation from videos.

ABSTRACT
Human activity recognition (HAR) based on wearable sensors has
brought tremendous benefit to several industries ranging from
healthcare to entertainment. However, to build reliable machine-
learned models from wearables, labeled on-body sensor datasets ob-
tained from real-world settings are needed. It is often prohibitively
expensive to obtain large-scale, labeled on-body sensor datasets
from real-world deployments. The lack of labeled datasets is a
major obstacle in the wearable sensor-based activity recognition
community. To overcome this problem, I aim to develop two deep
generative cross-modal architectures to synthesize accelerometer
data streams from video data streams. In the proposed approach, a
conditional generative adversarial network (cGAN) is first used to
generate sensor data conditioned on video data. Then, a conditional
variational autoencoder (cVAE)-cGAN is proposed to further im-
prove representation of the data. The effectiveness and efficacy of
the proposed methods will be evaluated through two popular appli-
cations in HAR: eating recognition and physical activity recognition.
Extensive experiments will be conducted on public sensor-based
activity recognition datasets by building models with synthetic data
and comparing the models against those trained from real sensor
data. This work aims to expand labeled on-body sensor data, by
generating synthetic on-body sensor data from video, which will
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equip the community with methods to transfer labels from video
to on-body sensors.
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1 PROBLEM STATEMENT
With the prevalence of wearable devices in our daily life, human
activity recognition (HAR) based on wearables has emerged as a
novel approach for fitness tracking and wellness monitoring. How-
ever, the lack of labeled large-scale datasets is a major obstacle
in the sensor-based activity recognition community. For exam-
ple, for physical activity recognition, most commonly used public
datasets only contain labeled sensor data ranging from 15 hours
(in 29 subjects) [12] to 30 hours (in 10 subjects) [19], and it has
been shown that increasing the amount of data used to train the
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model (including generated augmentation data) leads to further
improved results [17, 23]. Nowadays, deep learning has exhibited
extraordinary discriminative and generative power for modeling
complex data in a plethora of application domains, such as image
recognition, video understanding, speech recognition, and machine
translation among other domains [8]. In the era of deep neural
networks, without large-scale labeled datasets, it is difficult to lever-
age the benefit of deep learning. Therefore, exploring methods to
acquire labeled datasets efficiently has been a research interest
among many research communities for a long period of time. For
sensor-based activity recognition, the situation is even more chal-
lenging given the fact that, unlike images or audio, from which
the annotation can be obtained from the raw data, annotation of
sensor data is difficult for humans to do without the use of video
recordings post-experimentally. Ground truth acquisition requires
burdensome self-report, the presence of observers, or the use of
video recording that captures the activities of participants [1]. Nev-
ertheless, currently existing methods require large human effort to
obtain labeled datasets. Therefore, an efficient and effective method
to quickly acquire large-scale, fully labeled datasets would be useful
to the research community.

Currently, in addition to spending more resources collecting
larger scale datasets, data augmentation methods have been stud-
ied to achieve better performance on HAR tasks [13, 17, 23]. Most
current data augmentation solutions only contain artificially warp-
ing, scaling or jittering the real sensor data; thus the heterogeneity
of generated data is limited [17, 23]. Kwon et al. [13] recently uti-
lized data of a different modality (i.e., video) to generate on-body
sensor data in a sophisticated engineered pipeline. However, the
method suffers from robustness issues such as vigorous movement,
change of scenery, and occlusion. Moreover, the requirement for
heavy adjustment limits its wide deployment in real-world tasks.
Nevertheless, the idea of employing data of a highly related modal-
ity to synthesize motion sensor data is genuinely brilliant, in that
machine learning communities with interest in different modalities
can share knowledge, as well as datasets. The idea of cross-modal
transferring inspired the work presented here.

To overcome the problems mentioned above, a possible solution
is to use multi-modal representation learning to generate synthetic
data from learnt multi-modal distributions, which has proven effec-
tive in other modalities [26]. Multi-modal representation learning
can enable a number of applications across a variety of modalities,
including image captaining [10], image generation from text [20],
and conversion from video to audio and vice versa [5], as shown in
Figure 1. However, multi-modal representation learning with video
and IMU sensor data has only been sparsely studied [16]. To my
knowledge, there has not yet been any work on deep multi-modal
generative networks targeting sensor data synthesis, especially ac-
celerometer data synthesis based on video data. In this work, I aim
to fill the gap between deep multi-modal generative models and
sensor data synthesis.

This work presents two deep generative cross-modal models
for on-body accelerometer data synthesis and demonstrates the
usability and efficacy via extensive experiments. I will conduct
experiments in two tasks: eating recognition and physical activity
recognition. The models will be trained using video and on-body
accelerometer sensor, and tested on public sensor-based activity

recognition datasets. The usability of the generated sensor data will
be validated by comparing the activity recognition performance of
models trained with synthetic data and with real data.

2 RELATEDWORK
Work closest to mine falls under two categories: sensor data synthe-
sis and deepmulti-modal generative model, relatively in perspective
of problem-wise and algorithm-wise.
Sensor Data Synthesis: Besides the long standing problem for
general time series data augmentation, recently there has been
growing interest in sensor data augmentation techniques [2, 13,
17, 23, 24]. Some of them augment the sensor data by artificially
warping, adding noise to, or impose spatial transformation to the
real sensor data [17, 23]. Thus, the augmented data, which are in
essence distorted or transformed original data, has limited hetero-
geneity with the ’seed’ data. Therefore, these methods have limited
capability in generating sensor data of multi-factor heterogeneity.
Alzantot et al. [2] employed GAN to synthesize sensor data using
existing sensor data. However the quality of synthesized data was
not quantitatively evaluated but merely judged by loss function as
well as another real/synthetic classifier. In another work, Wang et
al. [24] also utilized GAN for sensor data synthesis using sensor
data. The quantitative performance didn’t show convincing results
of their proposed method. Kwon et al. [13] employed a highly hand
engineered pipeline to extract the 3Dmotion from video to generate
virtual on-body sensor data. The complex pipeline requires care-
ful adjustment and parameter fine-tuning. In contrast, I propose
end-to-end models to learn the multi-modal representation from
the raw data and generate synthetic sensor data.
DeepMulti-modalGenerativeModel:Although few researchers
use deep generative model to build a video-sensor multi-modal sys-
tem, however, if we take a broader view, we can find a list of works
that use multi-modal generative model in other pairs of modalities
such as audio and video [5], text and image [10, 20]. To keep the
conciseness of this paper, we review the most relevant and typical
works in recent years. Chen et al., proposed a deep cross-modal
audio-visual generation model to generate audio data from video
and generate video data from audio using URMP dataset [5]. Yang
et al. [25] used a temporal model to jointly build a deep multi-modal
model and model temporal sequential information at the same time.
What’s worth mentioning, Nakamura et al. used a stacked LSTM,
which takes multi-modal video and acceleration features as input
and builds a multi-task discriminative model for simultaneous ac-
tivity recognition and energy expenditure estimation [16].

3 PRELIMINARIES
This section briefly introduces two deep learning architectures em-
ployed in this work: Variational Autoencoder (VAE) and Generative
Adversarial Network (GAN).

3.1 Variational Autoencoder (VAE)
VAE [11] is a widely used deep generative model in representation
learning. VAE builds the mapping from the input observation 𝑥 to a
compressed code 𝑧𝑠 in the manner of an encoder, and then decodes
the coding to reconstruct the observation. The latent representation
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(a) training stage

(b) test stage

Figure 2: The architecture of Algorithm 1 in (a) training
stage and (b) test stage.

is calculated through:

𝒛𝒔 = 𝜇𝒙 + 𝜎𝒙 ∗ 𝝐 (1)

with 𝝐 ∼ N(0, 1). VAE imposes the code 𝒛𝒔 on a Gaussian distribu-
tion:

�̄�(𝒛𝒔) = N(𝑧𝑠 |0, 𝑰 ) (2)

The latent representation 𝒛𝒔 is supposed to learn the representative
attributes of the input raw data, thus to be useful for data generation.

3.2 Generative Adversarial Network (GAN)
GAN [9] is composed of two components - generator (𝐹𝐺 ) and
discriminator (𝐹𝐷 ). The Generator (𝐹𝐺 ) and Discriminator (𝐹𝐷 ) are
competing with each other as a zero-sum game framework, in the
manner that 𝐹𝐺 aims at confusing the discriminator and 𝐹𝐷 tries
to distinguish the samples generated by 𝐹𝐺 and the samples from
the original dataset. Both 𝐹𝐺 and 𝐹𝐷 are competing to individually
become more powerful of imitating original data samples and dis-
crimination capability iteratively. Thus the distribution of the data
is learned by the generator. A standard GAN has no control over
the modes of the data to generate [15]. The objective function is

min
𝐺

max
𝐷

𝑉 (𝐷,𝐺) = E𝑥∼𝑝𝑑𝑎𝑡𝑎 (𝑥) [𝑙𝑜𝑔𝐷 (𝑥)]+

E𝑥∼𝑝𝑧 (𝑧) [𝑙𝑜𝑔(1 − 𝐷 (𝐺 (𝑧)))] (3)

where 𝑝 (𝑑𝑎𝑡𝑎) is the target data distribution and 𝑧 is drawn from
a random noise distribution 𝑝 (𝑧); 𝐺 (𝑧) is the sample produced by
the generator; 𝐷 (𝑥) is the probability emitted by discriminator that
𝑥 is a real example rather than a fake one drawn from the model.

4 METHODOLOGY
In this section, I present two proposed approaches that utilize deep
cross-modal generative models in accelerometer data synthesis.

Figure 3: The architecture of Algorithm 2

4.1 Algorithm Design 1
The first design uses a conditional GAN to build a generative cross-
modal model. The architecture consists of two parts: video encoder
and conditional GAN (cGAN).

A video encoder is used to condense the high-dimensional video
clip into a feature vector. The I3D model [3] has powerful discrimi-
native capability and flexible input configuration for both raw video
and optical flow data, making it state-of-the-art model for visual
activity understanding in many sub-tasks. Therefore I3D model is a
candidate for video encoder. Besides I3D model, other video activity
recognition models as well as human pose estimation models will
also be tested.

A cGAN [15] models the conditional distribution of sensor data
based on video representation. cGAN takes extra information as
additional input on which the learned data distribution is condi-
tioned. Multiple types of information can be used to be conditioned
on, such as class label, information from another modality, or even
itself. Similar to Equation 3, the objective function of cGAN is

min
𝐺

max
𝐷

𝑉 (𝐷,𝐺) = E𝑥∼𝑝𝑑𝑎𝑡𝑎 (𝑥) [𝑙𝑜𝑔𝐷 (𝑥 |𝑦)]+

E𝑥∼𝑝𝑧 (𝑧) [𝑙𝑜𝑔(1 − 𝐷 (𝐺 (𝑧 |𝑦)))] (4)

where 𝑝 (𝑑𝑎𝑡𝑎) is the target distribution and 𝑝 (𝑧) is a random distri-
bution;𝐺 (𝑧 |𝑦) is the sample produced by the generator conditioned
on 𝑦; 𝐷 (𝑥 |𝑦) is the probability that 𝑥 is a real sample given by dis-
criminator conditioned on 𝑦.

Here the video feature vector from video encoder is taken as
additional information to be conditioned on. The intuition is that
the accelerometer signal depends on the movement of the subject
in the video, which can be extracted and encoded in a feature repre-
sentation. Specifically, the generator and discriminator of GAN can
be in the form of LSTM to leverage its sequential data modeling
capability. After the model is trained, in test stage, the video en-
coder takes the video as input and yields the visual representation.
The generator of cGAN takes as input the random Gaussian noise
N(0, 1), and uses the visual representation to condition on. The
output of the generator is the synthesized sensor data.

4.2 Algorithm Design 2
In this section, conditional VAE-conditional GAN (cVAE-cGAN) is
presented. Different from Algorithm 1, a sensory cVAE is added to
generate the distribution from which the random noise input of
cGAN is sampled. The video encoder and cGAN are the same as
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Algorithm 1. A conditional Variational Autoencoder (cVAE) utilizes
the information from video to learn a conditional distribution of the
sensor data. The idea stems from the intuition that a meaningful
prior distribution, which is the latent representation generated by
cVAE, will improve the generative capability of GAN. The structural
choice of encoder and decoder in cVAE could be fully connected
network [28].

The test stage is similar to that in Algorithm 1, only except that
the generator of cGAN takes as input the random noise sampling
from the sensor data distribution learned by VAE.

5 EVALUATION
The proposed methods will be evaluated on two tasks: eating recog-
nition and physical activity recognition. There are three types of
dataset in this study: training dataset that includes both labeled
video and sensor data, test dataset containing videos with activity
annotation, and validation dataset which is sensor-based activity
dataset. Two deep generative models will be built for each task on
the training set, and a large number of accelerometer data will be
generated from videos in the test dataset. Note that the synthe-
sized sensor data shares the same annotation with the video, thus
sensor data is inherently annotated. The synthesized sensor data
will be utilized in the training of sensor-based activity classifiers,
and trained classifier will be tested on validation dataset. Several
widely used classifiers including Logistic Regression (LR), Random
Forest (RF), Adaboost, Convolutional Neural Network (CNN), as
well as activity recognition model DeepConvLSTM [18] will be
chosen. These activity classifiers will be trained using either only
synthesized accelerometer data, only real accelerometer data or
synthesized data combined with a small part of real data, in order
to validate the effectiveness of the synthesized accelerometer data.

5.1 Task 1: Eating Recognition
This task aims at exploring the data generation capability of the pro-
posed model through a fine-grained classification problem, while
synthesizing missing sensor data in two self-collected datasets.

To ensure the training dataset has a high degree of diversity in
terms of the activity type, activity scene, as well as heterogeneity
of accelerometer sensor, three dataset are combined as training set:
CMU-MMAC Dataset [6], our iSenseOvereating eating dataset [27]
and smoking&eating dataset, all of which contain third-party videos
and wrist-worn accelerometer data. CMU-MMAC Dataset contains
both egocentric videos and third-party videos; accelerometer sensor
placement includes arms, legs and back; wrist-worn accelerometer
data are also collected. In this task only third-party videos and
wrist-worn accelerometer will be used. Our iSenseOvereating and
smoking&eating dataset have totally around 70 subjects and 50
hours third-party video in lab, both with fine-grained annotation
for eating and smoking gestures. Part of the wrist-worn IMU sensor
data are missing due to hardware failure. The part with sensor data
will be used in training dataset, and the part without sensor data as
test dataset. After the model is trained, the synthesized data will
be validated on two eating detection datasets [14, 22] for feeding
gesture recognition task in the aforementioned scheme.

5.2 Task 2: Physical Activity Recognition
The goal is to synthesize chest-worn sensor data to assist devel-
oping a model to recognize physical activity (standing, walking,
running, jumping jack, etc) from wrist-worn sensor stream. Three
datasets are used as training set: Stanford-ECM Dataset [16], CMU-
MMAC Dataset [6], and the Sense2StopSync dataset [29]. Stanford-
ECM Dataset comprises about 27 hours egocentric video and chest-
mounted accelerometer data. For CMU-MMAC Dataset, the ego-
centric videos and accelerometer at the back will be used here. The
Sense2StopSync dataset contains 45.2 hours of egocentric video
from 21 participants in free-living conditions, and the participant
sensor suite includes a chest-worn acceleormeter. Test dataset in-
cludes ThirdToFirst Dataset [7], which has egocentric videos with
physical activity annotation, and YouTube egocentric videos, of
which the titles and descriptions can be served as annotation. The
synthesized data will be tested using popular sensor-based activity
recognition datasets including PAMAP2 [21] and Opportunity [4].

Further, ablation study for both tasks will be conducted on VAE-
cGAN and cVAE-GAN which separately has the conditional dis-
tribution modeling removed from cVAE and cGAN, in order to
evaluate the effect of the conditional inference of cVAE-cGAN.

6 EXPECTED CONTRIBUTION
Overall, the design and implementation of two video-based deep
generative on-body accelerometer data synthesis models will be
presented. In this work, a list of contributions to the community
can be achieved:

• Two end-to-end deep cross-modal accelerometer data gen-
eration models based on video data are proposed, which
can be used to produce synthesized sensor data given video
containing human activities. This work aims at addressing
the large scale labeled IMU sensor data scarcity problem by
utilizing existing labeled video datasets.

• The proposed deep generative models will be evaluated
through experiments on multiple datasets. The proposed
models performance will be evaluated through comparing
the accuracy of activity recognition classifiers trained on
purely synthesized sensor data, real sensor data, and mixed
synthesized and real sensor data.

• A sensor data latent representation space will be learned
conditioned on video data, which can enable other video-
senor based multi-modal tasks, such as activity detection,
recognition and time synchronization.

The learned representation will also endow and motivate other
application scenarios such as cross-modal data retrieval, semi-
supervised learning, etc. I believe a larger group of applications
related to activity analysis will be unlocked based on the knowledge
and findings in this work.
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