
  

  

 Abstract—There has been an extensive amount of study on 
cough detection using acoustic features captured from 
smartphones and smartwatches in the past decade. However, the 
specificity of the algorithms has always been a concern when 
exposed to the unseen field data containing cough-like sounds. In 
this paper, we propose a novel sensor fusion algorithm that 
employs a hybrid of classification and template matching 
algorithms to tackle the problem of unseen classes. The 
algorithm utilizes in-ear audio signal as well as head motion 
captured by the inertial measurement unit (IMU). A clinical 
study including 45 subjects from healthy and chronic cough 
cohorts was conducted that contained various tasks including 
cough and cough-like body sounds in various conditions such as 
quiet/noisy and stationary/non-stationary. Our hybrid model 
was evaluated for sensitivity and specificity in these conditions 
using leave one-subject out validation (LOSOV) and achieved an 
average sensitivity of 83% for stationary tasks and an specificity 
of 91.7% for cough-like sounds reducing the false positive rate 
by 55%. These results indicate the feasibility and superiority of 
fusion in earbuds platforms for detection of cough events.  
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I.  INTRODUCTION 

 Ubiquitous computing is entering every part of our life. 
Mobile phones and wearable devices are carried by users 
almost anywhere at any time, enabling passive monitoring of 
various health conditions. According to a recent report from 
lung health institute, pulmonary disease is one of the major 
leading causes of morbidity and mortality globally [1]. 
Coughing is a ubiquitous symptom of pulmonary disease, 
especially for patients with COPD and asthma. Cough 
frequency and its characteristics are often used to monitor 
disease activity. There has been a tremendous amount of 
research work in detecting cough events from recorded audio 
[2, 3]. Researchers have also tried to characterize these 
coughs and enable disease detection/prediction [4]. The need 
for a robust mobile cough counter that could passively 
monitor patient’s lung health seems more serious than ever 
with the current COVID-19 pandemic. The key reason for low 
adoption of these algorithms is the poor precision of detection 
when the algorithms are exposed to in-field data containing 
unseen cough-like sounds. Various methods to tackle this 
issue were utilized such as inclusion of labor-demanding 
labeled field data, utilizing data augmentation techniques and 
utilizing generative and similarity-based algorithms [5, 6]. 
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However, none of these were able to provide robust detection 
of cough events while keeping the specificity of the algorithm 
high in the presence of cough-like sounds. The reason for this 
limitation is that most of these existing works are unimodal 
focusing only on audio signals which leads to high false 
positive rate, e.g., bystanders’ cough or a dog barking can be 
detected as the user’s cough. In this work we are relying on 
the fusion of the audio and IMU signals captured on a newly 
developed earbud platform. A cough is only detected if cough 
audio signature is accompanied by the head motion signature 
captured by the IMU sensors. Our key contributions are:  
 

• To the best of our knowledge, this is the first cough 
detection algorithm designed for earbuds platform 
utilizing both audio and IMU. 

• A novel sensor fusion algorithm is proposed that 
combines the acoustic-based classification and the 
DTW-based cough IMU signature identification to 
best address the specificity issue. 

• The evaluation of the model was done on a dataset 
that was collected in various conditions of quiet vs. 
noisy and stationary vs. non-stationary containing 
cough-like sounds not seen in the training. 

 

In the next section, we will provide a summary of previous 
related works in the domain. Section III describes the novel 
hybrid algorithm in details and section IV explains the dataset 
and the training process to generate the models. Section V 
presents the results of the evaluation and eventually, a 
conclusion and discussion of the future work will be provided.  

II. RELATED WORKS 

 Research domain for cough event detection from the audio 
signal from mobile devices has been extensively explored. 
Most of the previous works rely on feature engineering where 
specific acoustic features need to be extracted from the raw 
audio signal. For example, Matos et al. [7] extracted MFCC 
features to train HMM models. Larson et al. [8] build random 
forest model using spectrogram-based features and Amoh [9] 
ran deep learning models on spectrogram images. Most of 
these works used datasets that included cough and a few other 
body sounds such as speech and breathing and tried to classify 
between them. Many of them did not explore the viability of 
the model when applied to real field data. Xu et al. explored 
augmentation method to simulate the noisy environment in the 
field and evaluate the model but did not provide any results on 
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the precision of the model when exposed to cough-like sounds 
such as throat clearing and bystander cough [6]. Alvarez et al. 
utilized the Hu moments while capturing noisy field data to 
evaluate robustness of the algorithm [5]. They reported a very 
high specificity, but a big portion of their noise data was 
already seen in the training set.  

To tackle the problem of high false positive rate (FPR), 
unlike previous methods in the literature, we propose a hybrid 
structure of both classification and matching algorithm. 
Matching algorithms do not need including of all the different 
sources of cough-like sound in the training. However, they are 
poor when dealing with rich data such as audio and video 
signals due to the information loss. But they have been widely 
used for IMU signals for activity recognition. Use of IMU 
signal for cough requires placement of IMU somewhere close 
to the center of mass to capture the cough motion. Earbud 
platform seems to be the perfect platform for this purpose. Fig. 
1 depicts the raw audio signal and its spectrum as well as the 
accelerometer signal for cough and cough-like sounds such as 
speech and throat clearing. As can be seen from Fig. 1, while 
the audio signature of cough could be similar to a cough-like 
sound, their motion signatures are different.  

  
Fig. 1. Acoustic and motion signatures for cough and cough-like events  

III. FUSION ARCHITECTURE FOR COUGH DETECTION 
Feature-based classification algorithms require collection 

of enough data from different labels of sounds to robustly 
detect coughs with low false positive rate. Matching 
algorithms on the other hand rely on the similarity of the input 
and a template. Therefore, distance threshold could be picked 
relying only on a limited set of negative and positive samples. 
Summarizing a video or audio signal to a template, mandates 
extreme reduction of dimensionality. However, for motion 
signals, the required information could often be summarized 
in a narrowband-filtered signal around the frequency of the 

motion of interest without much loss of information. While 
matching algorithms mitigate the need for collecting large 
number of negative samples from a diverse set of classes, they 
are essentially slow algorithms. Therefore, in our algorithm we 
exercise matching only when a cough is detected from the 
audio model. Fig. 2 presents the proposed fusion algorithm 
architecture. In the first layer, the audio signal is processed 
where silence episodes are filtered out and a classifier 
differentiates cough from speech and noise. When a cough is 
detected, DTW is activated to verify or reject the cough based 
on its similarity to template’s IMU motion signature.  

A. Audio-based Cough Classification 
The audio-based classifier in the fusion algorithm utilizes 

a similar structure to the one proposed in Nemati et al [3]. The 
audio is first preprocessed using a low-pass filter with a corner 
frequency of 20 KHz (defined by the frequency content of 
cough signal). Then the signal is normalized using min/max 
values of the sensor. Preprocessed signal is then passed 
through a sliding window with 0.4 second window size 
(matching to average duration of a single cough) and 0.1 
second jump size. Each audio chunk is then transformed into 
the feature domain including temporal and spectral features. 
Among the features, “SPlevel” feature which represents the 
area under the curve of the signal amplitude is employed to 
filter out the silence (and low volume) portion of the signal. 
The rest is fed to a classifier which differentiates “cough” from 
“speech” and “noise”. Postprocessing is then done to smooth 
the labels and identify the start and end index of each cough 
episode. The data used to train the classifier is limited to 
speech, cough and background noise. Therefore, the audio 
model is not able to differentiate between cough and cough-
like sounds such as bystander cough. Therefore, the specificity 
of the audio portion of the fusion algorithm should 
theoretically be low when introduced to the field data. 
However, we mitigated this issue by using the IMU-based 
template-matching module described next.  

B. IMU-based DTW Template Matching  
Elastic distance measurement (esp. DTW) is shown to 

achieve unbeatable performance for template matching 
problems [10]. While cough head motion seems to have a 
unique signature compared to many other activities (Fig. 1), 
one can imagine the possibility of similar head motion 
occurring in the normal daily life. Therefore, the key in using 
DTW for cough detection is to only use it when there is a level 
of certainty that a cough has happened. That is provided by the 
audio model in our algorithm. To preprocess the IMU signal, 
a Butterworth high-pass filter with a corner frequency of 0.3 is 
used to remove the DC baseline and motion noise. Then a 
rolling average smoothing filter with the width of 10 samples 
is employed to remove the high-frequency glitches. The IMU 

  

Fig. 2. Fusion cough detection algorithm architecture 
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chunk selected by the audio channel is fed to a sliding window 
with 0.1s jump size and 0.2s window size. The DTW distance 
is then measured for each window and the minimum is used to 
make the decision whether a cough exists inside the chunk.    

IV. TRAINING 
To train and evaluate our model, we conducted a study to 

collect cough and breathing data from a large number of 
subjects performing coughing and other tasks in various 
stationary and non-stationary conditions within different 
background noise profiles while wearing earbuds. The focus 
of this work is only on the cough and not the breathing. 

A. Study Design 
Through a collaboration between Samsung Research 

America (SRA) and a clinical research organization (CRO), 45 
participants were recruited under ethic committee approval, 
including 30 healthy and 15 chronic cough subjects. The study 
was approved by the Institutional Review Board (IRB) with 
protocol number IAA-2112. The cough portion of the study 
included two phases: Cough onboarding and in-home data 
collection. The onboarding was done virtually due to COVID-
19 infection concerns. The data was collected using Samsung 
Earbuds pro paired with a Samsung S20 phone (as gateway). 
The phone received 16 KHz audio and 50 Hz IMU signals and 
sent them to the server. Buds’ firmware was designed to send 
1-axis audio and 10-axis IMU (accelerometer, gyroscope and 
quaternion). Table 1 lists the onboarding tasks and their 
duration. Coughs were collected in different situations for a 
thorough evaluation of the model. Non-cough tasks were 
specifically chosen as scenarios where the model would be 
most vulnerable to false positives. For the background noise 
we asked the user to play a YouTube links of a fan (as white 
noise) or, TV and crowded area (as colored noise).   

TABLE I.  COUGH ONBOARDING TASKS 

Cough Tasks Non-Cough Tasks 

Stationary quiet: Sitting, Lying down while 
coughing occasionally (each 30 sec) 

Scripted speech (1 
min) 

Stationary with background noise: White, 
Colored (each 30 sec), coughing occasionally 

Cough-like sounds: 
Bystander coughing, 
Throat clearing, 
Laughing, Eating, 
Drinking (each 30 sec) 

Stationary with music played in buds (30 sec) 
while coughing occasionally 
Yoga with and without background noise 
(each 45 sec) while coughing occasionally 
Walking while talking (1 min) while 
coughing occasionally 

Free head motion 
while talking (30 sec) 

B. Annotation Platform 
To generate the ground truth, the cough task from the 

subjects were manually listened to and segmented by trained 
annotators using “audacity” toolbox. Similarly, annotators 
picked the timestamp of the IMU peaks associated with each 
cough by visualizing both audio and IMU signals. Out of 45 
subjects, 9 subjects were excluded as the cough peaks were not 
visually observable as some subjects did not sit still while 
coughing (against what they were asked to do) or provided 
coughs that didn’t sound natural leading to unnatural head 
motion when coughing.  

C. Audio Model Training 
After annotation, cough audio is filtered and normalized. 

After preprocessing, 47 features were generated including 

well-established temporal (mean, median, std, skewness, 
kurtosis, zcr, SPlevel and quartile range) and spectral (MFCC, 
chroma, centroid, spread, rolloff, flatness, etc.) by sliding 
through cough segments. The cough features are coming from 
“sitting” and “lying down” tasks while speech features come 
from sliding through speech task. Non-cough parts of the 
stationary tasks in Table 1 were used to create the “others” 
class. Fig. 3 provides an overview of the audio pipeline for 
training the model. Ten-fold cross validation was used to find 
the optimum number of features through a stepwise feature 
inclusion process and model selection was done through 
LOSOV using the selected features.   

D. DTW Template Training 
 To train the IMU cough templates, annotated IMU segments 
from the “sitting” task were fed to the pipeline provided in Fig. 
3 by picking a window around the IMU peaks associated with 
each single cough after applying a LPF with 0.3 Hz corner 
frequency and a 10-sample moving average smoothing filter. 
Cough templates for each subject are then aligned and the 
personalized template was generated by accumulating and 
averaging them (Fig. 4). The distance threshold was picked as 
the average of distance values between cough tasks and cough-
like tasks followed by a grid search around the value.  

 
Fig. 3. Training pipeline for audio and IMU modules 

 
Fig. 4. Accelerometer signal through template generation process   

V. RESULTS 

A total number of 5296 “cough” feature rows were 
generated from 1073 coughs. A total of 6750 “speech” and 
3815 “others” feature rows were also generated.  A total of 32 
features were selected using collinearity and t-test feature 
selection methods and then ranked based on their info gain 
values. A total of 14 features were ultimately picked through 
a stepwise feature inclusion process as more features didn’t 
lead to better F1 score. In the next step, for each subject, we 
evaluated the sensitivity of the model using all the cough tasks 
(Table 1 column 1) by excluding the subject from training set. 
We also evaluated model’s specificity using cough-like tasks 
(Table 1 column 2) with the addition of yoga and walking 
session where a high FPR is probable due to body motion. 
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FPR is defined as the total number of instances detected as 
cough in non-cough tasks, divided by the total number of 
windows in non-cough tasks. Specificity is defined as the 
number of true negative instances (TN) divided by (TN+FP). 
As can be seen from Fig. 5, the audio-based model is very 
sensitive (90+% recall values). However, false positive rate is 
more than 10% for many of the cough-like sounds and up to 
44.8% for the “eating” task. This clearly shows the specificity 
limitation for the audio-based model. 

Fig. 5. Audio-based model Sensitivity (top) and Specificity (bottom) 
In the next step IMU is fused to reduce the FPR. DTW is 

only enabled when at least two consecutive coughs are 
detected from the audio model. A grid search for the window 
size of the template was done with values of 0.1, 0.2, 0.3 and 
0.4 and different combination of sensor modalities. Gyroscope 
signal and template window size of 0.2 gave the best results.  
The distance from all 3 axes were combined a. The threshold 
value was learned to be 350 for gyroscope (GYR) signal and 
grid search with 4 points around this value with step sizes of 
25 was done to find the optimum threshold. Fig. 6 shows the 
sensitivity and specificity results for these threshold values. 
Sensitivity is provided only for tasks that contained cough 
while specificity is provided for only tasks with high chance 
of false positive. As can be seen, sensitivity goes up with 
threshold while specificity goes down. The optimum point was 
found where product of the two values maximizes (325) where 
the sensitivity is 83% for stationary tasks (a drop of 14.2% 
compared to baseline audio model). However, specificity 
improves considerably (more than 90% for most of cough-like 
tasks).  For a cough counter in the field, having low FPR is 
more important than a high recall. Table 2 provides a 
comparison between the fusion model and the baseline audio 
model showing 55% FPR reduction compared to the baseline.  

 

 
Fig. 6. Fusion model Sensitivity (top) and Specificity (bottom) 

TABLE II.  FPR VALUES FOR AUDIO-BASED AND FUSION MODELS 

Tasks Audio FPR 
(%) 

Fusion-based 
FPR (%) 

FPR Reduction 
(%)  

Speech 
Bystander cough 
Throat Clearing 

Laughing 
Eating 

Drinking 
Head motion 

5.0   
10.9   
14.0   
21.3   
44.8   
13.8   
7.6 

1.7   
7.3 
  6.5 
  8.7 
  24.5 
  8.5 
  0.8 

66.0 
  33.0 
  53.6 
  59.2 
  45.3 
  38.4 
  89.5 

VI.   CONCLUSION AND FUTURE WORKS 

Utilizing a hybrid fusion algorithm comprising of an 
audio-based classification model and a DTW-based 
templating matching model, we implemented the first multi-
modal cough detection algorithm for earbuds platform. The 
fusion model on the other hand achieved an average 
sensitivity of 83% (a reduction of 14.2% over the baseline) 
for stationary tasks while leading to an average reduction of 
55% for FPR (an average specificity of 91.7%) for cough-like 
tasks. Gyroscope proved to be most promising for the 
matching module. The model, however, is still not sensitive 
enough for non-stationary tasks. Body motion is polluting the 
IMU signal and disinfecting from it could be a potential future 
work. Another future work could be to propose an automatic 
method for annotation of the IMU peaks from the labels of the 
cough within the audio. Finally, testing the proposed 
algorithm on actual field data seem necessary and perhaps 
vital for further evaluation of the algorithm. 
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