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ABSTRACT
Persistent coughs are a major symptom of respiratory-related
diseases. Increasing research attention has been paid to
detecting coughs using wearables, especially during the
COVID-19 pandemic. Among all types of sensors utilized,
microphone is most widely used to detect coughs. How-
ever, the intense power consumption needed to process au-
dio signals hinders continuous audio-based cough detection
on battery-limited commercial wearable products, such as
earbuds. We present CoughTrigger, which utilizes a lower-
power sensor, an inertial measurement unit (IMU), in earbuds
as a cough detection activator to trigger a higher-power sen-
sor for audio processing and classification. It is able to run
all-the-time as a standby service with minimal battery con-
sumption and trigger the audio-based cough detection when
a candidate cough is detected from IMU. Besides, the use
of IMU brings the benefit of improved specificity of cough
detection. Experiments are conducted on 45 subjects and our
IMU-based model achieved 0.77 AUC score under leave one
subject out evaluation. We also validated its effectiveness on
free-living data and through on-device implementation.

Index Terms— Cough Detection Activation, Sensitivity-
prioritized Classification, Multi-Center Classifier, Template
Matching, Earbuds, Wearables

1. INTRODUCTION

Persistent coughs can be a sign of serious lung diseases,
such as Chronic Obstructive Pulmonary Disease (COPD),
asthma, pneumothorax, atelectasis, bronchitis, lung cancer,
and COVID-19. Since a cough can be an important indicator
of respiratory disease, reliable automated detection of coughs
using everyday wearable devices is especially desirable. In
recent decades, wearable devices such as smartphones and
earbuds are becoming prevalent in our daily life. A body of
work has recently emerged, with wearable sensors showing
promise in automatically detecting coughs [1–9]. Earbuds-
based devices have been shown to be effective in cough
detection [7–9].

Fig. 1: Earbuds embedded with IMU and 3-axis accelerome-
ter cough data (blue: x-axis, green: y-axis, red: z-axis)

Audio-based sensing has shown promise in detecting
coughs on device, but requires higher battery consumption
and introduces privacy concerns [1–3, 5, 6, 8]. Battery con-
sumption is a major concern, particularly among commer-
cial wearables, such as earbuds, where power is a limited
resource. For example, Samsung Galaxy Buds2 has a 61
mAh battery that supports up to 7.5 hours of play time per
charge [10], and adding extra features will cause a drop in bat-
tery life, and ultimately utility and user-interest. Some studies
explored the use of an inertial measurement unit (IMU), due
to its low battery footprint and computational load, to detect
coughs [7, 9]. It was soon realized that using a traditional
classifier (XGBoost) to detect coughs could only yield a 47%
sensitivity and 54% F1-Score [7]. The large number of con-
founding head movements made it challenging to distinguish
between a cough and a non-cough.

Audio and IMU sensing have complementary characteris-
tics: audio can better distinguish between coughs and non-
coughs, while IMU enables battery-efficiency. Given that
the majority of the time is often spent by people not cough-
ing, the low-power IMU can be used to trigger the audio
sensing pipeline when a candidate cough is detected. To do
this, the IMU must yield high sensitivty, to ensure all coughs
are ultimately passed onto the audio sensing. Since tradi-
tional classification methods yield low sensitivity, we propose
a novel multi-center template matching algorithm to achieve
high sensitivity in the IMU data. This algorithm is then used
in a two-stage pipeline, where an always-on IMU triggers au-
dio processing, only when needed, to reliably confirm the de-
tection of a cough.



Fig. 2: Illustration of sensitivity-prioritized classification.

In this work, we focus on the IMU-based sensitivity-
prioritized cough detection problem and propose CoughTrig-
ger, an IMU-based activator that utilizes a novel multi-center
classifier to trigger audio processing and cough detection.
CoughTrigger can further alleviate the privacy issue because
it does not require constant collecting and processing au-
dio data. We summarize the contributions of this work as
follows: (1) A battery-efficient dual IMU-audio cough de-
tection framework using earbuds; we define the requirements
for the first IMU stage of the pipeline and formalize it as
a sensitivity-prioritized classification problem. (2) We pro-
pose CoughTrigger, an IMU-based cough detection activator
based on a novel template matching method – Multi-Center
Classifier and present superior experimental results compared
with baselines. (3) We implement our proposed method on a
commercial device and prove the feasibility and effectiveness
of CoughTrigger with on-device result.

2. METHODOLOGY

2.1. Sensitivity-prioritized Classification

Unlike a traditional binary classification problem where the
positive and negative samples are distinguishable either by
human perception or machine learning techniques in a trans-
formed feature space, the IMU cough data and non-cough
ones are not fully separable due to an overlapping region in
feature space, as illustrated in Figure 2. To guarantee the pos-
itive samples (coughs) can be detected to trigger audio-based
cough detection in the next stage, we formalize the problem
as a sensitivity-prioritized classification task, which means
higher sensitivity is prioritized over specificity, and approach
this problem with a novel template matching algorithm.

2.2. Multi-Center Classifier (MCC)

Zhang et al. proposed a template matching algorithm [9],
called Multi-Centroid Classifier, which aims at iteratively
creating an increasing number of clusters, each of which has
its own centroid and radius and all together cover all the
positive samples while include as few negative samples as
possible. When a satisfying accuracy is achieved, the derived
centroids and radii will be used in the test set as templates and
thresholds to classify positive samples from negative ones.
The method has shown merits in accuracy, inference speed,
and model size. In this work, we adopt the idea, make sub-

Algorithm 1: Training Multi-Center Classifier

input : Positive and negative training samples and
stop criterion H

output: K templates Ck, (k = 1, 2, . . .K) and K
thresholds

Initialize number of clusters K = 1;
Assign all the positive samples to cluster R1;
Randomly select seed center C1 from positive
samples of cluster R1;

Do discrepancy-based clustering with C1 to obtain
total cost L, updated center C1 and threshold;

while total cost L > stop criterion H do
Select Rt with the highest cost t = argmaxi Li;
From the positive samples of Rt, select the
sample which brings the largest cost increase as
the new seed centroid;

Do discrepancy-based clustering using K + 1
centers C1, . . . , CK+1 to obtain total cost L,
updated K + 1 centers, and K + 1 thresholds;

Calculate cost Lk for each of the K + 1 clusters;
L =

∑K+1
k=1 Lk;

K = K + 1;
end

stantial modifications to the training phase, and propose an
enhanced version, Multi-Center Classifier, on which we build
CoughTrigger.
Training Phase We present the new training procedure in
Algorithm 1. The original MCC comprises three major parts:
discrepancy cost, discrepancy-based clustering, and cluster
averaging. The discrepancy cost is used to measure and com-
pare the purity of each cluster. Discrepancy-based clustering
assign positive samples into clusters. Cluster averaging de-
rives one template and one threshold for each cluster. As the
original method is sensitive to regional density in the feature
space, which prevents the derivation of a pseudo-optimal
clustering result, we make substantial modifications to the
discrepancy-based clustering and cluster averaging. Also, we
change the way we select new seeds for better convergence.
Below are the three modifications introduced:
(1) We update the averaging step, making it easier to con-
verge on noisy datasets. When deriving the centroid for each
cluster, instead of averaging operation, we select as center the
positive sample which has the minimum Distmax (Distmax

is the max distance between the current sample and any other
positive sample).
(2) By modifying the clustering step, we make the algorithm
less sensitive to regional density in the feature space. When
clustering, we require each sample to be assigned to only
one cluster instead of allowing samples assigned to multiple
clusters. This modification brings about better convergence.
We will showcase the effect with a toy dataset in Section 4.1.



(3) When increasing the number of clusters, instead of adding
one random centroid seed, we select the sample that brings
the greatest increase to the cost function.
Inference Phase The inference steps are unchanged [9]. The
distance between a test sample and each template is calcu-
lated and compared against the threshold. If the distance is
smaller than the threshold, then the test sample is predicted
as positive, otherwise it is negative.

3. EXPERIMENT

3.1. Data Collection

We generated an earbud-based cough dataset from 45 par-
ticipants (15 with lung disease, 22 male, 41.4 ± 10.7 years
old) with approval by the Institutional Review Board. In the
experiments, one earbud was worn by a participant to collect
IMU data at 50 Hz and audio at 16 KHz.
In-lab Experiment To evaluate the sensitivity of our model
we collected eight cough sessions, where we asked each
participant to cough continuously for a period of time with
a short pause between every two coughs. Cough sessions
include five stationary and three non-stationary periods. Sta-
tionary periods comprised: coughing while seated (30s),
coughing while lying down (30s), coughing while listening
to music from an earbud (30s), coughing with background
fan noise (30s), and coughing with background music/TV
noise (30s). Non-stationary periods comprised: coughing
while performing yoga in a quiet environment (45s), cough-
ing while performing yoga in a noisy environment (45s), and
coughing while walking (1 min). To evaluate the specificity,
non-cough activities that involve signals that could resemble
cough motion were collected including: eating (30s), drink-
ing (30s), laughing (30s), scripted speech (1 min), throat
clearing (30s), free head motion while talking (30s), and one
additional bystander coughing session (30s). On average,
10.5 coughs are captured in each cough session for each
participant. We aim at detecting each single cough in every
session while preventing false alarms.
Free-living Experiment Enrolled participants also took part
in a free-living experiment, where they were asked to cough
naturally in the morning and in the afternoon for one week.
At each time, data were collected for coughs while seated for
30s and while walking for 30s.
Annotation We annotated every single cough using audio.
Due to the limitations of data transmission from earbud to
data logging app, there is a random time drift of up to about
400 ms between the audio and IMU data. We resolved the
asynchronization by observing the data and identifying peaks
in the x-axis of accelerometer, which corresponds to the most
probable motion of the wearer while coughing. We labeled 45
participants for the in-lab experiment and the 15 participants
from the lung disease cohort in the free-living experiment.

3.2. Model Development

Data Preprocessing 3-axis accelerometer data are prepro-
cessed using a moving average filter with a window size as
10 samples and a Butterworth high-pass filter (ωc = 3π).
Positive samples are extracted from seated and lying down
cough sessions using a 0.4s window centered around the an-
notated IMU cough moment. To increase the variety of cough
data during training, we applied three time series augmenta-
tion methods, namely jittering, scaling, and magnitude warp-
ing [11] on cough data enlarging the positive sample size by
four times. For negative samples, we segmented the non-
cough session accelerometer data using a 0.4s sliding win-
dow with 0.1s stride size. Then we randomly subsampled
four times the positive samples from non-cough sessions as
negative samples, in order to balance class ratio.
Model Training To expedite the training process, we trained
one MCC model with stop precision criterion as 0.8 for each
participant in the training set using multi-variate DTW dis-
tance measure, then aggregated the models of each training
participant together and ran on all the training participants.
We used a greedy algorithm to rank the templates and select
the top K templates based on template importance measured
by how many new positive samples are hit by each template.
Model Testing We applied MCC with K templates on the
accelerometer data of the test participant’s cough and non-
cough sessions, with 0.4s window size and 0.02s stride size.
Then, we aggregated and merged all the predicted cough win-
dows to determine the final cough event prediction. In our
case, the capability of manually adjusting the trade-off be-
tween sensitivity and specificity is desirable. A benefit of
MCC is that we have two ways to adjust it: to choose the
number of top K templates used and to adjust the thresholds
of templates. When more (less) templates are used, or when
we increase (decrease) the thresholds of templates, it leans to-
wards a higher sensitivity (specificity).
Evaluation Method Leave one subject out cross validation
(LOSOCV) is adopted. For cough sessions, we compared the
predicted cough segments against the ground truth coughs.
True positives are defined as predicted cough segments inter-
sected by ground truth coughs. We calculated the sensitivity
of cough sessions as a ratio of true positives to ground truth
coughs. We used sample-level specificity to test how well
it can specify non-cough events. The model is validated on
free-living data in a similar manner.

4. RESULT

4.1. Improvement of MCC

We used a synthetic dataset generated from Gaussian distribu-
tion to validate the improved MCC, as in Fig. 3. The original
MCC achieved 0.57 test accuracy with 10 centroids. Using
improved MCC, 0.99 test accuracy was obtained with 8 cen-



Fig. 3: Illustration of Multi-Center Classifier improvement.

ters. The first reason is that the original method allows one
sample to belong to multiple clusters, increasing the possi-
bility of highly overlapped clusters. Instead, the new method
can separate clusters towards different directions. Second, the
new clustering averaging method makes MCC less sensitive
to regional density.

4.2. CoughTrigger Results

Choice of Input Data We compared all the combinations
of the 3-axis accelerometer data, including three using one
axis, three using two axes, and one using three axes. The best
result is achieved with both the x- and y-axis. That aligns
with the IMU direction in Fig. 1 as z-axis only contributes
to sensing motion in the left/right direction, which is not as
useful in detecting coughs. We tried with only 3-axis gyro-
scope and combining both accelerometer and gyroscope data
but observed lower accuracy.
In-lab Experiment Result Under LOSOCV, when training
MCC, on average 14.2 templates were generated for each
participant in each fold. When using top five templates, we
achieved 90% sensitivity on average for the five stationary
cough sessions, and an average sensitivity of 86% on all
cough sessions. The average specificity is 53% across all
non-cough sessions. When the number of adopted templates
ranges from 1 to 30, we achieved 0.77 AUC with all the 15
sessions. We present the ROC curve of CoughTrigger in
Fig. 4 Left. We emphasize that our specificity evaluation
was designed for the worst case scenario with a variety of
activities. In real life, as for most of the time the wearer is
stationary, the specificity is expected to be higher.
Free-living Experiment Result We trained with the in-lab
data from all 45 participants and tested on the free-living data
from the 15 participants in the disease cohort. When we ap-
plied top 10 templates, we received an average sensitivity of
87% during the stationary periods, and an average sensitivity
of 82% on both seated and walking cough periods. Although
we only have cough sessions in the free-living setting, we
found a 55% average specificity across both sessions for all
the participants. When we adjusted the thresholds of each
templates, we received 0.80 AUC for stationary coughs and
0.73 AUC for stationary and walking sessions.
Baseline Methods Since there is no existing out-of-box

Fig. 4: Left: In-lab experiment ROC curve; Right: Battery
life comparison.

sensitivity-prioritized classification method, we investigated
ways that may apply, including one-class classifier and adjust-
ing the decision boundary of a traditional classifier. Because
one-class classifier only utilizes the positive class and models
the distribution of positive samples, the overlapping of two
classes should not interfere with modeling of the positive
class. We tested the popular OC-SVM which relies on iden-
tifying the smallest hypersphere consisting of all the positive
samples [12, 13]. We utilized the same preprocessing steps
and concatenated x- and y-axis into one vector of size 40 as
input. After adjusting the hyperparameters in a large range
with different kernels (linear, RBF, and Sigmoid), we only
received 0.51 AUC, which is no better than random guess.
For a traditional classifier, we implemented a 3-layer NN with
20, 10, and 5 neurons in each layer and we observed the same
result as OC-SVM.
On-device Implementation We implemented CoughTrigger
on Samsung Galaxy Buds2. Fig. 4 Right shows the battery
life of base firmware without cough detection, CoughTrigger
using 10 and 20 templates integrated in the base firmware, and
an integrated audio-based cough detection method [8]. We
see that the base firmware without cough detection has around
18 hours battery life, and integrating CoughTrigger (10 or 20
templates) makes no significant change in the battery life.
The IMU-based cough detection implementation consumes
less battery than an audio-based method, which shows the
feasibility of leveraging CoughTrigger as a first-stage filter to
reduce battery consumption.

5. CONCLUSION

In this work, we introduce a battery-efficient earbuds-based
two-stage IMU-audio cough detection framework and for-
malize the IMU first stage as a sensitivity-prioritized clas-
sification problem. We propose using a novel multi-center
classifier as a first-stage cough detection activator. By con-
ducting in-lab, free-living, and on-device experiments, we
demonstrate the feasibility and effectiveness of our proposed
method. Our proposed sensitivity-prioritized template match-
ing algorithm can be adopted as a plug-and-play module for
other sensor-fusion wearable applications.
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[5] Jesús Monge-Álvarez, Carlos Hoyos-Barceló, Paul
Lesso, and Pablo Casaseca-de-la Higuera, “Robust de-
tection of audio-cough events using local hu moments,”
IEEE Journal of Biomedical and Health Informatics,
vol. 23, no. 1, pp. 184–196, 2019.

[6] Daniyal Liaqat, Salaar Liaqat, Jun Lin Chen, Tina
Sedaghat, Moshe Gabel, Frank Rudzicz, and Eyal
de Lara, “Coughwatch: Real-world cough detection us-
ing smartwatches,” in ICASSP 2021 - 2021 IEEE In-
ternational Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2021, pp. 8333–8337.
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