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The development and validation of computational models to detect daily human behaviors (e.g., eating, smoking, brushing)
using wearable devices requires labeled data collected from the natural field environment, with tight time synchronization
of the micro-behaviors (e.g., start/end times of hand-to-mouth gestures during a smoking puff or an eating gesture) and
the associated labels. Video data is increasingly being used for such label collection. Unfortunately, wearable devices and
video cameras with independent (and drifting) clocks make tight time synchronization challenging. To address this issue,
we present the Window Induced Shift Estimation method for Synchronization (SyncWISE) approach. We demonstrate the
feasibility and effectiveness of our method by synchronizing the timestamps of a wearable camera and wearable accelerometer
from 163 videos representing 45.2 hours of data from 21 participants enrolled in a real-world smoking cessation study. Our
approach shows significant improvement over the state-of-the-art, even in the presence of high data loss, achieving 90%
synchronization accuracy given a synchronization tolerance of 700 milliseconds. Our method also achieves state-of-the-art
synchronization performance on the CMU-MMAC dataset.
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1 INTRODUCTION
The temporally-precise annotation of sensor data is necessary in order to build models that can passively sense
and infer behavior from sensor signals. For behaviors involving limb movements, such as smoking, eating, and
brushing, video-recordings from wearable cameras are increasingly being used to obtain temporally-precise
ground truth labels. The cameras are worn and positioned to capture movements of interest under �eld conditions
(see Fig. 1). Video is recorded simultaneously with the target mobile sensor data, and standard video coding is
used to obtain ground truth labels for the sensor streams. These data can be used both to validate the accuracy
of existing methods and to train new models. This approach has been used for eating, drinking, and brushing
activities [1� 4, 9, 45], and is particularly valuable for �ne-grained activities lasting on the order of seconds.
However, this approach requiresaccurate time synchronizationbetween the video sequence and the sensor data
streams so that annotations obtained from video can be automatically transferred to label the sensor data. Any
temporal misalignment between the video and sensor streams will result in label noise (i.e., incorrect labeling of
the sensor data) and can signi�cantly degrade the accuracy of the detector.

Because it is common for commodity sensor hardware to utilize independent, unsychronized clocks, previ-
ous sensor system architectures have incorporated e�ective approaches to sensor synchronization [12, 25, 38].
Unfortunately, these approaches cannot be easily extended to video capture. In contrast to sensor network
approaches [38], commercially-available wearable video cameras such as GoPro, are not designed for synchro-
nization with other non-camera sensors.1 In addition, battery constraints make it infeasible to transmit video
data wirelessly so that it cannot be time-stamped at a central collection point simultaneously with other sensor
streams [25]. As a result of these issues, the problem of time synchronizing of video cameras [20, 37, 41] and
wearable devices [35] is well-known within the community to be a practical challenge in study implementation
and a silent killer of data accuracy [4].2

When data is collected under laboratory conditions, many strategies can be used to establish synchronization
points, such as the well-known clapperboard for audio-visual (AV) synchronization or the use of special hand
gestures to synchronize body-worn accelerometers with cameras [34, 35]. These approaches are impractical for
�eld studies as they impose signi�cant burden on participants and rely on their adherence [10]. Alternatively,
manual synchronization can be performed with tools such as ELAN [11] or Chronoviz [18]. This approach is
laborious and time-consuming, and as a result of clock drift, it may need to be performed at multiple time points
across a long recording.3 It follows that there is a need for a �exible, general purpose solution for synchronizing

1While add-on products from third-party vendors, such as SyncBac Pro and ':pulse' from Timecode Systems [30], can provide synchronization
solutions for wearable cameras, they are limited to synchronizing multiple cameras and do not address our scenario.
2Even something as basic as synchronizing audio and video for �lm-making has a long history of challenges and failures. For example, a
legendary live performance by Aretha Franklin in 1972 was not released for 46 years, due in part to the failure to synchronize the video and
audio properly during recording [19].
3Several authors have investigated clock drift arising in video cameras [33, 42]. The GoPro has an average drift of 1 second per hour, which is
roughly the same duration as many �ne-grained gestures.
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cameras with other mobile sensors that can be applied to �eld-collected data, does not impose any additional
burden on participants, and is fully-automatic.

In this work, we introduce a fully-automatic method called Window Induced Shift Estimation for Synchroniza-
tion of video and accelerometry (SyncWISE). Given a clip of video and accelerometry data, it outputs the time
o�set for synchronization (see Fig. 1(a)). We address the two key technical challenges ofpartial observabilityand
coordinate registration. Partial observability refers to the fact that the time intervals in which synchronization
points can be reliably identi�ed are sporadically distributed. For example, a chest-worn camera on a participant
standing at a street corner will capture signi�cant dynamic video content, while a co-located accelerometer will
register no movement. This is in contrast to prior work [13, 21] which has implicitly assumed that all moments
of time are equally good for estimating synchronization. We address partial observability via a kernel density
estimation approach in which weighted segment pairs are correlated and their votes aggregated to obtain the �nal
o�set. The second challenge of coordinate registration arises in synchronizing video with motion-based sensors,
such as accelerometers, that output their data with respect to a 3D coordinate system. In this case, the correct
comparison of the signals requires the two coordinate systems (camera and sensor) to be registered, so that
corresponding directions of movement are being compared. In contrast, prior work on sensor synchronization in
autonomous vehicles [21] leverages the fact that sensors are rigidly mounted and calibrated during installation.
We address coordinate registration by using a PCA analysis to identify a common principle direction between
modalities prior to registration. We validate our SyncWISE method on two datasets: the CMU-MMAC activity
dataset [16], and a novel real-world dataset, called Sense2StopSync(S2S-Sync), from a smoking cessation �eld
study with 21 participants, consisting of 45.2 hours of recordings over the three days prior to quit. This work
makes the following three contributions:

� We introduce theSyncWISEmethod for automatically synchronizing video clips with motion-based sensor
data such as accelerometers and Inertial Measurement Units (IMUs). We believe we are the �rst to identify
and address the challenges of partial observability and coordinate registration that arise in the �eld
environment.

� We provide the novel Sense2StopSync(S2S-Sync)dataset to the research community,4 comprising 45.2
hours of time-synchronized optical-�ow videos and accelerometery data from two chest-worn devices
collected from 21 subjects.

� We present state-of-the-art automatic synchronization results for the CMU-MMAC and S2S-Sync datasets,
which signi�cantly outperforms two versions of a baseline method [21]. The software will be made freely-
available.

2 RELATED WORK
The time synchronization of multiple sensor streams is a long-standing challenge that cuts across a broad range of
application domains and has a long history, ranging from the invention of the clapperboard in 1931 to synchronize
audio and video during movie �lming, to the protocols used to synchronize sensor networks [12]. This review
is focused on methods for synchronizing video with wearable sensor streams for mobile sensing applications.
We identify four categories of approaches: 1) Naturalistic methods, of which our work is an example, which do
not impose any special requirement on signal capture; 2) Explicit methods, which enforce synchronization at
the hardware or software level during capture; 3) Participant-based methods, which require speci�c actions by
participants to achieve synchronization; and 4) Manual approaches which rely on human observation of video
and other signals to identify synchronization points.

4 https://github.com/HAbitsLab/SyncWISE
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(a) (b)

Fig. 1. (a) Illustration of input and output in our SyncWISE system. (b) The wearable sensory platform consists of (A) a
chest-worn sensor suite containing a 3-axis accelerometer worn underneath the clothes, (B) a GoPro video camera; an
example of video camera footage is provided below the camera, (C) a wrist-worn sensor containing a 3-axis accelerometer
and a 3-axis gyroscope worn on both wrists, and (D) a study smartphone with data logging so�ware.

2.1 Naturalistic Methods
The goal of these methods is to handle sensor data captured in the �eld without special hardware or speci�c
participant behaviors. The closest previous work to ours is Fridmanet al. [21], which describes a cross-correlation-
based method designed to synchronize multi-modal signals for research in autonomous driving. Their approach
assumes that all moments in time are equally good for synchronizing signals, and they use global cross-correlation
to utilize the maximum amount of data. This is e�ective because their sensors are rigidly mounted and the
coordinate axes are aligned and calibrated. In contrast, mobile wearable sensing is plagued by much greater sensor
noise (due to sensors being worn improperly), variable alignment between sensor axes, and partial observability,
meaning that sensors do not always capture the same phenomena with the result that not all moments in time
are equally plausible for synchronization. Our matching approach, which uses windowed cross-correlation in a
weighted kernel density estimation framework, addresses partial observability by identifying which windows of
data provide reliable signals for synchronization. Our PCA-alignment approach provides a means to automatically
align the coordinate frame axes across multiple sensors. Our experimental evaluation in Sec. 5 demonstrates the
bene�ts of our approach over the baseline method from [21] on two datasets.

A related set of naturalistic methods provide synchronization solutions for GPS navigation systems, of which [33,
39] are representative examples. Skoget al. [39] provide a Kalman �lter-based solution for clock drift that exploits
the fact that both GPS-receiver and IMU provide signals that directly relate to the spatial location of the sensor
system. In contrast, in our setting the optical �ow we compute from the video cannot be directly related to the
accelerometry stream due to the partial observability problem.

Another set of related methods address the automatic synchronization of multiplevideo streams[37, 41, 43].
These approaches leverage the fact that video is a single modality with unique spatiotemporal properties. In
contrast, our work addresses the case of synchronizing across sensor modalities, which requires the extraction of
an appropriate feature representation from each sensor's signal. Related work by Chung and Zisserman [13] uses
deep learned representations to align audio and video streams in the context of correcting lipsynch e�ects in
video dubbing. Their solution exploits the fact that the video and audio signals are always directly correlated,
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unlike our case where partial observability is common. Finally, multiple prior works assume that synchronized
audio-video signals are available and construct joint audio-visual feature representations for tasks such as source
separation or sound classi�cation [6, 23, 44]. While some of these works use arti�cial time shifts between the
audio and video channels as a means of data augmentation, they have not been utilized for signal synchronization.

2.2 Explicit Synchronization
A wide range of signal capture solutions have been designed which enforce synchronization at the hardware-
software level. Here we focus on three approaches. The �rst approach is used in sensor networks [12, 28, 38],
including body area networks. Since all sensors are on the same network, protocols can be used to keep the sensor
clocks synchronized, and corrections can be applied to address clock drift or skew [12]. In the second approach,
all sensor signals can be wirelessly transmitted to a centralized collection node, such as a smartphone, where they
are time-stamped to a common clock, thereby achieving synchronization (mCerebrum [25] is a representative
example). These two approaches do not work for wearable cameras, due to lack of network support, network
bandwidth, and battery limitations. An exception is when all data collection takes place in the same location.
In [1], a smartphone holder is installed in the location where tooth-brushing occurs, allowing video to be recorded
on the smartphone camera (the centralized node) itself, thereby achieving synchronization. In [16], cooking
activities were captured in the lab, enabling a wearable camera and other sensors to be synchronized via hardware
(e.g., using genlock where a reference signal from one device is used to synchronize all other devices). Note that
we use the dataset from [16] for the experiments in Sec. 5.4. The third approach uses special hardware to achieve
real-time synchronization [7, 14]. In [14], a periodically blinking LED is controlled to provide cues to synchronize
di�erent modalities. While such an approach can be e�ective, it requires additional implementation and system
complexity, and the automated detection of the LED signal may be challenging in uncontrolled environments.
Our approach leverages commodity hardware and standardized research grade mHealth solutions to support a
broad range of study designs.

2.3 Participant-Based Methods
The clapperboard approach to audio-visual synchronization provides a reliable solution because it introduces an
explicit synchronization point which is visible across modalities. Analogous approaches exist for other multi-
sensor synchronization tasks. In Plötzet al. [34], speci�c hand gestures are assigned to participants to provide
explicit synchronization points for aligning video and accelerometer data. Similarly, Hanet al. [22] propose a
method to synchronize video and sensor data for walking behaviors by detecting and matching the maximum
backward swings of the leg. Bannachet al. [8] develop a method to automatically detect speci�c gestures (e.g.,
`clap') assigned to participants. These approaches can work in controlled settings, but they introduce additional
participant burden and a single point of failure in the mobile setting.

2.4 Manual Synchronization
In cases where alternative synchronization approaches fail, a fall-back solution is to use tools such as ELAN [11]
or Chronoviz [18] that enable the manual identi�cation of synchronization points via inspection. This approach
has been used routinely in prior mHealth and mobile sensing works and should be considered the default
method [2, 3, 27, 35, 45]. Our goal is to remove the need for such manual e�orts and provide a fully-automatic
solution to this important practical problem.

3 STUDY DESIGN AND DATA COLLECTION
We now detail the collection of the S2S-Sync dataset. We �rst describe the study design in Sec. 3.1. The sensor
data collection is outlined in Sec. 3.2 and the approach to data annotation is described in Sec. 3.3.
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3.1 Study Design
Data was collected during a smoking cessation study,Sense2Stop. Participants (age 18-65) were eligible for
Sense2Stop if they had smoked at least 1 cigarette per day for the past year. The S2S-Sync dataset is generated
from Sense2Stop during the three-day pre-quit period in which subjects exhibited maintenance behavior (i.e.
typical smoking patterns). The pre-quit period provided baseline data for participants' smoking and eating
behaviors. The video collected during pre-quit supports the annotation of smoking and eating behaviors to
validate and re�ne machine-learned models.

3.1.1 Study Timeline.On Day 1, participants visited the lab, where they were �tted with the mobile devices and
received instructions. The pre-quit phase ended on Day 4, when participants returned to the lab to upload their
wearable video data to the study servers. During this visit, participants had the opportunity to delete any video
footage that they did not wish to share. Participants then continued into the post-quit period without the video
camera.

3.1.2 Participant Instructions.During the pre-quit period, participants were instructed to wear the provided
GoPro camera for 4 hours on at-least 2 separate days, that included at least one smoking event and the eating of
at least one meal and one snack, for a total of 8 hours of in-the-wild recorded video.

3.2 Devices
The wearable devices worn by the participants included a GoPro video camera strapped to their chest, a chest-worn
sensor suite comprising an accelerometer, electrocardiography (ECG) sensor and respiratory plethysmography
(RIP) sensor, and a pair of wrist-worn devices with tri-axial accelerometers and gyroscopes on each wrist.
Additionally, they were provided with a study-dedicated smartphone with data collection software installed. We
focus our analysis on synchronizing between the chest-worn accelerometer and GoPro video camera.

3.2.1 Video Camera.Participants wore a GoPro Hero 4 camera recording 1080p video at 30 Hz. The GoPro was
mounted on the chest using a chest mount strap and case that protects the camera and image quality from dust,
water, and other elements. The camera was oriented towards the participant's face. The captured video was
stored on anµSD card as a series of MP4 �les, each of which is 4 GB and 17 minutes and 43 seconds long. Before
deployment, the GoPro's clock was synchronized with a PC to the National Institute of Standards and Technology
(NIST) time server. As an added precaution, the camera is oriented towards the PC to brie�y record the NIST
time webpage (time.gov), providing an additional synch reference before the camera goes out into the �eld.

3.2.2 Accelerometers and Data Logging.There are two sets of accelerometers used in our study. The accelerometer
from the chest-worn device, AutoSense [17], sampled at 10.66 Hz, was used in all of our automatic synchronization
experiments. Note that this device is mounted on a harness which is separate from the GoPro. In Fig. 1(b), the
accelerometer is on (A) while the camera is on (B). Thus while the two devices are roughly co-located, the camera
is capable of signi�cant movement relative to the accelerometer, including changes to its orientation. Additional
accelerometers from the MotionSense wristband [32], mounted one on each wrist and sampled at 16 Hz, were
used by the annotators during manual synchronization (see Sec. 3.3.1).5

Data from all accelerometers was transmitted to the study phone wirelessly and logged on an encryptedµSD
card by the open-source mCerebrum smartphone app [25]. Then the data were periodically uploaded to a secure
server running the open-source Cerebral Cortex [24]. The mCerebrum app time-stamps each packet of data to a
common clock, thereby synchronizing the accelerometry signals to each other. Wireless transmission can result
in dropped packets and packets arriving out-of-order. The software performs interpolation for small gaps in

5The di�erence in the sampling rates for the accelerometers is due to their di�erent use cases, and the importance of sampling minimally so
as to preserve battery life: The chest sensor monitors respiration, while the wrist sensors monitor physical activity.
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