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Figure 1: Use case of VibroScale weighing food items (A) in food courts and (B) in grocery stores. (C) System overview.

ABSTRACT

Smartphones, with their ubiquity and plethora of embedded sen-
sors enable on-the-go measurement. Here, we describe one novel
measurement potential, weight measurement, by turning an ev-
eryday smartphone into a weighing scale. We describe VibroScale,
our vibration-based approach to measuring the weight of objects
that are small in size. Being able to objectively measure the weight
of objects in free-living settings, without the burden of carrying a
scale, has several possible uses, particularly in weighing small food
items. We designed a smartphone app and regression algorithm,
which we termed VibroScale, that estimates the relative induced
intensity of an object placed on the smartphone. We tested our
proposed method using more than 50 fruits and other everyday ob-
jects of different sizes and weights. Our smartphone-based method
can measure the weight of fruit without relying on an actual scale.
Overall, we observed that VibroScale can measure one type of ob-
ject with a mean absolute error of 12.4 grams and a mean absolute
percentage error of 7.7%. We believe that in future this approach
can be generalized to estimate calories and measure the weight of
various types of objects.
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1 INTRODUCTION

In order to objectively quantify characteristics of an object, it is
necessary to measure the object. Often specific devices are neces-
sary to make these measurements (e.g., a scale to measure weight).
However, it would be burdensome to carry these measuring devices
at all times. With the advancement in mobile and ubiquitous com-
puting, researchers have explored performing these measurements
using various types of everyday devices; one such device is the
smartphone. Modern smartphones are equipped with several sen-
sors that can support various types of measurements. Smartphone-
based measurements can range from human activities [8], and
mood [9] measurement to physical measurement of liquid’s sur-
face tension [17] or elevation [11]. Researchers, while performing
these measurements, have explored approaches that use various
smartphone components and sensors.

Among the various components and sensors in the smartphone,
here we focus on using the accelerometer and the smartphone’s
vibration motor. We hypothesized that the vibration caused by a
smartphone’s vibration motor is different when a weight is placed
on the smartphone, as compared with when no weight is placed on
the smartphone. Here, we present VibroScale, a system that explores
the change in vibration when a weight is placed on the smartphone
(Figure 1). VibroScale controls the vibration of the smartphone’s
vibration motor and measures the amplitude of vibration using the
smartphone’s built-in accelerometer. Not only does a weight placed
on top of the smartphone dampen the vibration (as captured by
the accelerometer), but dampening is linearly correlated with the
amount of weight placed on the smartphone. Overall, we observed
that using a smartphone, we could measure a wide range of weights.
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However, while realizing VibroScale, we identified several chal-
lenges: (i) The vibration pattern is affected by the placement of
the item on the smartphone. The object should exert its weight
completely on the smartphone and should not touch other surfaces.
(ii) Every object has its own natural frequency. Thus, the type of
item placed on the scale also affects the vibration pattern. (iii) The
characteristics of the smartphone’s vibration motor change under
different battery levels. Literature also suggests that the internal
temperature affects the motor’s characteristics. Thus it was neces-
sary to obtain a baseline vibration characteristic.

Overall, we present the design and implementation of VibroScale,
a vibration-based weight-measurement scale using a smartphone.
VibroScale can measure the weight of objects the size of a tennis
ball. We evaluated VibroScale using more than 50 fruits and other
everyday objects. Our results show that our method can indeed
measure the weight of fruits with a mean absolute error of 12.4
grams for one type of object. We highlight one application case of
fruit calorie estimation by combining VibroScale with an image-
based fruit recognition system. However, as an alternative of a
scale, in more general cases, our system can be used to measure
any object of similar size with moderate mean absolute error of
33.0 grams.

2 RELATED WORK

Work closest to VibroScale falls under two categories: novel weight
measurement methods, and use of vibration in various situations.

2.1 Novel Weighing Methods

Although weight is one of the most fundamental measurements, and
weighing demand is arguably pervasive in daily life, little attention
has been paid to novel weight measurement devices and equipment.
At a more broad weight measure level, including weight measure-
ment of humans, livestock, or vehicles, a few studies propose novel
techniques for the corresponding weight measurement [1, 3, 5, 6].
Although the basic need to measure an object or a food item has
existed for long (especially for individuals with specific diets), there
is no effective weight measurement method available when a scale
is not present.

2.2 Vibration-based Sensing Technology

Vibration-based sensing has been employed in a broad range of de-
vices and applications, including activity recognition [7, 19], speech
recognition [14, 15], human computer interaction [12], smartphone
environment recognition [2, 4], and security and privacy [10, 16],
as well as Internet of Things (IoT) applications [20]. If we categorize
the existing vibration-sensing works in terms of the source of the
vibration, there are three types of applications: (i) sensing intrinsic
object vibration, (ii) sensing human physiological vibration, and
(iii) sensing the vibration induced by an add-on vibration motor.

2.2.1 Intrinsic Object Vibration Sensing. In the field of activity
recognition, many daily activities exhibit vibration at unique fre-
quency bands, such as typing, drilling, and using coffee machine,
which can be detected using either wearable sensors [7] or ambient
sensing [13, 19]. Laput et al. [7] used a smartwatch to detect the
vibration signatures of hand-held objects or hand gestures and infer
the ongoing activities. Zhang et al. [19] implemented a system that
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could scan the room environment and detect vibrating objects and
perform the activity inference task. Marquardt et al. [13] showed
that a keystroke on a keyboard could be detected from a nearby
smartphone, and the text entered using the nearby keyboard could
be discovered using accelerometer signal and a malicious applica-
tion. These works detect the inherent object vibration to perform
recognition tasks.

2.2.2  Human Physiological Vibration Sensing. Human body parts
such as the heart and vocal chord exhibit specific vibration patterns.
These vibrations can be collected to detect various events. For exam-
ple, Michalevsky et al. demonstrated that speech recognition could
be achieved using the gyroscope in smartphone located near the
speaker [15]. Lin et al. [10] proposed a novel method of biometrics
that could generate secret key based on heartbeat using piezoelec-
tric sensor. Maruri et al. [14] realized robust speech recognition
and human-to-human communication using a smart glass with a
piezoelectric sensor located in the nasal pads.

2.2.3  Vibration Motor-Induced Active Sensing. Even when the ob-
ject of interest does not vibrate, vibration can be induced by adding
a vibration motor on the object and detected by an Inertial Measure-
ment Unit (IMU) sensor for recognition and communication tasks.
Sensing is conducted in an active manner in that it requires an ex-
ternal energy source input rather than the object to be sensed itself.
Sen et al. [16] employed a vibration motor to share keys between
smart devices. Zhao et al. [20] detected the fill level of a waste bin
using a motor and IMU attached on the bin, while Ma et al. [12]
proposed a vibration-based communication method over human
skin and showcased that between an on-wrist smartwatch and a
hand-held smartphone. Besides designing a gadget with motor and
IMU, the smartphone built-in motor and IMU are used for actively
sensing the surface on which the smartphone is placed [2] and
infering the smartphone position [4]. In this work, we propose a
novel object measurement method using a smartphone without
any additional components, and we validate the effectiveness and
efficacy of our method as an alternative to using a scale through
various tests.

3 OVERVIEW OF VIBROSCALE

The overall goal of VibroScale is to objectively measure the weight
of items. VibroScale attains this goal by using a novel vibration-
based approach to measure the weight of any object that is placed
on it. VibroScale is a smartphone app that controls a smartphone’s
vibration motor and collects data from the accelerometer. VibroScale
uses this data to calculate the placed item’s weight.

3.1 Device and Implementation

For our experiments, we used a Google Nexus 5 smartphone run-
ning Android 4.4 (API level 19). This smartphone has InvenSense’s
MPU-6515 accelerometer embedded into it. The vibration motor
present in the smartphone has a vibration frequency that varies
between 25 and 32 Hz.

To measure the weight of the object, it is necessary to first obtain
the baseline vibration characteristic. Thus, VibroScale first turns
on the smartphone’s vibration motor and measures the vibration
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Figure 2: Data processing and modeling pipeline.

intensity for 3 seconds. During this phase, the VibroScale smart-
phone application displays “WAIT” on the smartphone, guiding
the user not to place any object on it at that time. This step allows
VibroScale to collect the baseline (zero-load vibration or reference)
weight at the specific battery level and internal temperature. After
the initial 3-second measurement, the user is guided to place the
object on the smartphone. The two-stage design stems from the
observation that the zero-load vibration amplitude (when no item
is placed) varies based on battery levels. Moreover, the with-load
vibration amplitude (when an item is placed) also varies even when
testing the same object at different times. However, we observed
that the difference between with-load phase and zero-load phase
has little variance for the same object.

The VibroScale app continuously measures and records the vi-
bration amplitude by collecting data from its accelerometer using
all three accelerometer axes. The accelerometer is sampled at 200
Hz, which is sufficiently high to capture vibration generated by
the motor, even at the highest frequency. We use an Ozeri ZK14-S
kitchen and food scale to measure the actual weight of the objects.

3.2 Data Processing and Modeling

The first step in data processing involves ensuring that the data
collected from the accelerometer are at 200 Hz. If, due to hardware
limitations, the data collected for any second are not 200 Hz, we
interpolate the data using a linear interpolation method. Next, we
extract the zero-load stage (first 3 seconds) accelerometer’s y-axis
signal d; (t = 0,..., T1) and the with-load stage (after 3 seconds)
accelerometer’s y-axis signal @; (t=0,..., T). We use Equations 1
and 2 to obtain the zero-load intensity and with-load intensity,
respectively.
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Finally, we obtain the relative intensity induced by the object by
computing the difference between I and I, as shown in Equation 3.

I=1-1 3)

Figure 2 pictorially presents the entire process. This relative induced
intensity I is used to build a linear regression model, which we use
to predict the weight of the object.

4 EXPERIMENTS AND RESULTS

Dataset: To determine the possibility of determining an object’s
weight using VibroScale, we used the following 52 distinct items:
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Figure 3: Variation in vibration when no weight is placed
on the smartphone or when variously weighted apples are
placed on the smartphone.

apples (24 pieces), onions (16 pieces), green pepper (6 pieces), and
non-food tableware including glasses and bowls (6 pieces). The
weights for each of the categories is listed in Table 1.

Table 1: Objects used in the study along with their actual
weight range and error in predicted weights. MAE, mean ab-
solute error; MAPE, mean absolute percentage error.

[ Apple [Onion[Pepper[Tableware[ All

Number (N) 24 16 6 6 52
Min/Max (g) | 114/202 | 53/376 | 118/164 59/263 53/376
MAE (g) 12.4 41.3 16.2 32.4 33.0
MAPE (%) | 7.7 | 332 | 119 25.9 23.7

Evaluation strategy: To evaluate the performance of our model, we
performed a leave-one-object-out cross validation for each object
and then for all objects combined. When evaluating the N items,
we build a linear regression model using N-1 items, and test it on
the Nth item, we repeat this step N times. We tested different axes
of the accelerometer and performed Principle Component Analysis
(PCA) to calculate the PCA components of the x/y axis and x/y/z
axis for intensity calculation. The dominant frequency components
of the different axes were also tested to derive intensity. In the end,
we found that the most prominent variation was observed when
using y-axis data in the time domain. Figure 3 shows the variation
in vibration for different objects.

Result: Figure 4 shows the distribution of relative vibration inten-
sity based on weight. The relationship is noisy due to the variation
in natural frequency of the objects and due to the employed predic-
tion model. Nonetheless, we observed a moderate linear correlation,
with a Pearson correlation coefficient of 0.70 (p=6e-9). Overall, the
objects used in our study ranged from 53 grams to 376 grams. When
we performed a leave-one-object-out cross validation, we observed
that the mean absolute error (MAE) in predicting the weight of
the object was 33 grams, and the mean absolute percentage er-
ror (MAPE) was 23.7%. The MAE and MAPE for apples were 12.4
grams and 7.7%, respectively, while they were 41.3 grams and 33.2%
for onions. Table 1 presents the MAE and MAPE for the different
objects.

Figure 5 shows the variation in actual and predicted weight
of apples. For apples weighing between 114 and 202 grams, we



UbiComp/ISWC 20 Adjunct, September 12-16, 2020, Virtual Event, Mexico

J#.a
4

0 100 200 300 400
Weight (grams)

Relative Intensity (m/s~2)
bl—' o = N W A U O

Figure 4: Distribution of the relative intensity for all objects.

observed a MAE of 12.4 grams with a standard deviation of 10.7
grams and a MAPE of 7.7%.

5 DISCUSSION AND FUTURE WORK

We presented the possibility of measuring the weight of objects
using a smartphone. This has several implications:

Application: Objectively measuring weight of food objects has
applications in diet monitoring [18]. It can be used for monitoring
intake and measuring calories consumed during transient eating
episodes. It can also help in determining how much food has been
purchased during a grocery shopping episode. Using a scenario in
which a person captures an image of the food being consumed and
then places the food item on the smartphone running VibroScale
an image recognition algorithm can recognize the food type while
the phone measures the weight of the item. Combining the two
outcomes can allow estimating the amount of calories present in
the food item.

Influencing factors: Currently, we measured the weight of items
when the phone is placed on the table. In the future, we will inves-
tigate the effect of varying factors, including the surface on which
the smartphone is placed (e.g., a hand, wooden table, or steel table),
contact area between the object and smartphone, natural vibrating
frequency of the object, and even the phone battery state (which
can effect the vibration motor) on the performance of the system.
In addition, the accuracy in different weight ranges beyond 376
grams will be studied. We also noticed that fruit items with thick
peels (such as some special type of orange) might not work well
using VibroScale, which makes sense since the thick peels have
effect as a cushion layer between object and smartphone, affecting
the vibration intensity in a complex way.

6 CONCLUSION

Here, we present the design and implementation of VibroScale,
a smartphone-based system that can measure the weight of an
object placed on it. VibroScale uses the vibration intensity of the
smartphone’s vibration motor and its built-in accelerometer to
predict the object’s weight. In this study, we demonstrate that
VibroScale is able to compute the weight of individual objects with
reasonably high accuracy.
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