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Abstract

Problematic eating behaviors are a major cause of obesity.
To improve our understanding of these eating behaviors, we
need to be able to first reliably detect them. In this paper
we use a wrist-worn sensor to test a generalized machine
learning models’ reliability in detecting eating episodes
through data processing. We process data from a 6-axis
inertial sensor. Since most eating episodes do not occur
while moving, we filter out periods of physical activity, and
then use an advanced motif-based time-point fusion tech-
nique to detect feeding gestures. We also cluster each of
the false alarms into four categories in an effort to identify
the main behaviors that confound feeding gesture detec-
tion. We tested our system on eight participants performing
various activities in the wild while wearing a sensing suite:
a neck- and a wrist-worn sensor, along with a wearable
video camera continuously recording to capture ground
truth. Trained annotators further validated the algorithms
by identifying feeding gestures, and categorized the false
alarms. All eating episodes were detected; however, many
false alarms were also detected, yielding a 61% average
F-measure in detecting feeding gestures. This result shows
clear challenges in characterizing eating episodes by using
a single inertial-based wrist-worn sensor.
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in-the-field test; overeating; inertial sensors; motif-based
segmentation; K-Spectral Centroid clustering; fusion; classi-
fication; feeding gesture.

ACM Classification Keywords

H.1.2 [User/Machine Systems]: Human Factors

Introduction

More than two-thirds of adults are considered to be obese
or overweight [9]. Obesity costs more than 147 billion dol-
lars per year in the US [13]. Studies on obesity and diet
have been main focuses in the behavioral sciences and
the health care community for many years. One traditional
method of recording dietary intake relies on self-reporting
data, which may result in high burden on participants and
high bias over long periods of time. With the development
of wearable sensors, pervasive computing, and passive
sensing data analytics, various automated dietary recording
systems have been developed for eating behavior recogni-
tion and analysis in recent decades [7, 14, 6, 3, 10, 4]. De-
veloping such systems includes embedded system design
as well as signal processing, human activity recognition,
and behavioral analysis.

There are many different wearable sensors that exist on
the market today. However, given the ubiquitous nature of
smart watches, people are most willing to wear a wrist-worn
sensor compared to sensors worn on other parts of the
body [1]. Feeding detection is one application of sporadical
activity spotting, which is a difficult and open problem within
the activity recognition community [7].

The challenges of feeding gesture detection include reli-
able data collection (proper mapping of data to labels), in-
accurate gesture recognition due to interclass similarity of
confounding gestures (due to the high volume of possible

confounding gestures), and high intraclass variability of hu-
man feeding gestures (due to variability across culture and
individual habits). Simply dividing the data into feeding ges-
tures and non-feeding gestures (NULL class) places several
gestures that are similar to feeding within the NULL class.
Being able to explain which activities within the NULL class
are confounding behaviors will help us improve our machine
learning models for detection and characterization of eating
behaviors.

In order to build an effective activity recognition model that
can generalize well in free-living populations, structured and
unstructured eating activities, along with confounding ac-
tivities, are induced in the lab. Increasingly, studies have
incorporated in field data into their model development, re-
sulting in more realistic gestures and human behaviors.

However, the majority of prior work in this field aims to build
models from in-lab data [3, 4, 12, 8]. While it is known that
personalized models outperform generalized models in pre-
dictability, the ongoing challenge in machine learning is to
build generalized models. As a result, in order to improve
future activity recognition development, we aim to explain
in this paper when generalized models for feeding gesture
detection fail.

The purpose of this paper is to show both how generalized
feeding gesture detection models perform when trained and
tested in the field, and to explore the barriers of gesture
recognition in the field. We use only one wrist-worn inertial
sensor on participants, and employ a two-step framework
to detect and characterize eating episodes. First, we uti-
lize an activity level recognition detector to single out the
time segments when participants are sitting. We then use a
motif-based time fusion classifier (MTFC) to detect feeding
gestures. Finally, we test our algorithm on eight participants
from an in-the-field dataset and categorize the false alarms
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to reinforce future machine learning model development.

Related Works

Dong et al. show reasonable correlation between the num-
ber of bites and caloric intake in a meal in their previous
work [5, 6]. Several devices with embedded sensors are
being developed and deployed to detect feeding gestures,
such as smart wristbands, smart necklaces, smart rings,
etc [7, 14, 6, 3, 10, 4, 16, 12, 2].

Thomaz et al. employed a similar commercial wrist-worn
sensor (Pebble) to detect eating episodes with a sliding
window classification and clustering approach. Using ac-
celerometer data, they showed the effect of selecting differ-
ent essential parameters in their framework [14]. Dong et
al. [6] showed a method for detecting an eating episodes
throughout the day in free-living populations using the as-
sumption that meals begin and end in elevated activity
(since a participant often moves before and after their meal).

Figure 1: A participant wearing a
wrist-worn sensor, a neck-worn
sensor, and one of the three types
of cameras: (A) chest camera, (B)
wrist camera, and (C) shoulder
camera

Literature in detecting feeding gestures has not advanced
beyond 75%-80% F-measure with only wrist-worn sensor
[3, 6, 14]. Prior literature has not been able to effectively
analyze the reasons behind false alarms because of lack
of proper ground truth data (no previous study has used a
video camera in the field). The majority of ground truth in
the field is generated by self-reported data. Thus our study
is unique in its having video-recorded data of participants in
the field, lending greater insight and discovery into why our
machine learning models yield such high false alarm rates.

The contributions of this paper are three-fold. Firstly, we
show results for detecting feeding episodes with a motif-
based machine learning technique for eight participants in
the field. Secondly, with the motif-based method, we dis-
covered confounding gestures in free living environments
that are similar to feeding gestures, providing greater insight

into why our activity recognition models fail in the field. Fi-
nally, we provide categories of hand movements that result
in false alarms, as well as context-based categorization of
the false alarms in order to gain a better understanding of
the context in which these models fail. We believe that while
video cameras create privacy concerns, they can greatly
increase our ability to build reliable activity recognition mod-
els that work well in the field.

Experimental Setup

To understand the barriers and facilitators to wearable ad-
herence, we previously conducted an experiment (N=24)
[1] where we asked participants to wear one of the three
types of cameras (shoulder, wrist, or chest), a Microsoft
Band 2 (mBand 2) wrist-worn sensor, and neck-worn sen-
sor as shown in Figure 1. We asked them to do some struc-
tured and unstructured activities in the field and afterward
we conducted interviews to understand privacy, comfort,
and stigma concerns that can emerge from wearing these
sensors. In this paper, we use the accelerometer and gy-
roscope data from the wild, along with the ground truth
obtained from the camera to build feeding gesture detec-
tion models. We have processed a total of 1920 minutes of
video in the study.

In this study, we found that 81.5% of feeding gestures hap-
pen with the dominant hand. Thus, with one wrist-worn sen-
sor worn on the dominant hand, we can only detect 81.5%
of feeding gestures. With wrist-worn sensors worn on both
hands we could theoretically detect all the gestures, how-
ever, this would further increase participant burden (many
participants are not willing to wear two wrist-worn sensors).

Data Collection

We use an mBand 2 to collect inertial sensor (including ac-
celerometer and gyroscope) data at the frequency of 31 Hz
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(from options of 16 Hz, 31 Hz, and 62 Hz), and prior liter-
ature [15] found 31 Hz to be sufficient resolution in captur-
ing feeding gesture counts. We set the frame rate of video
camera at 10 Hz to ensure that the video camera can col-
lect data for an entire day (up to 24 hrs).

One of the challenges in processing data generated from
commercial wearable sensors is that the reliability of the
sensor data collected fluctuates over time. To detect a feed-
ing gesture, the reliability of the sensor data needs to be
high. We estimate reliability by analyzing the sample rate
on a second by second basis. We assign a reliability score
between 0 and 1 for each second. If the data points col-
lected within a second are equal to or greater than the sam-
ple rate (32 samples), the score for this second will be 1; if
only half the sampling rate was collected (16 samples) the
score will be 0.5. We then calculate reliability of the data for
each participant by averaging the scores across the entire
data set.

As the function in side bar shows, F
s

is the frequency set-
ting, N(t, t+ 1) is the number of points from t to t+1. All the
time variables are in seconds.

R =

P
Tend�1
t=Tstart

f(1� Nt,t+1

Fs
)

T

end

� T
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<
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Average reliability score for the 8 participants is 96.1%, vari-
ance is 0.32%. Participants with lower than 70% reliability
(2 out of 10 participants) were not included in the data anal-
ysis.

To analyze the video footage, we deploy trained annotators
to label the ground truth of each participants’ activity.

Methodology

Data Preprocessing
To distribute the white noise from the signals across the fre-
quencies we apply a Gaussian kernel (sigma is set to 0.1
and the window size is set to 10). Since participants were

given the ability to delete any video footage, we identify the
portions of the video that were deleted and subsequently
delete (after smoothing to maintain continuity of data) the
corresponding inertial sensor data. Time synchronization
between the inertial sensor and video camera data is a sub-
tle but critical step in time series ground truth labeling of
data. Because of the existing unpreventable time difference
between the time stamp from video recording and the time
stamp from the wrist-worn sensor data (which is synchro-
nized with the smartphone clock), we recorded the smart-
phone’s local time with the video camera to visually identify
the time difference for that day. Using the recorded time in
the video and the time difference between devices, we were
able to associate gesture labels with labels from video.

After preprocessing, we apply a two-stage approach to eat-
ing detection that comprises motion detection (MD) and
feeding detection (FD).

Two-stage Feeding Detection Approach
From the video recordings, we realized that the majority of
meals were consumed when the participants were station-
ary. As a result, we applied motion detection first to filter out
the segments of data where the participants are walking or
physically active. We subsequently applied a motif-based
search and classification algorithm [17] to identify feeding
gestures. Our framework is depicted in Figure 2.

Motion Detection
We generated labels of the data that signal when the par-
ticipants are stationary or moving. A stationary period is
comprised of sitting or standing without body motion and
a moving period is comprised of walking or running. For
motion detection we apply a sliding window approach to
segmentation of the data.

We use a simple statistical features set including means,
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Figure 2: Feeding episode detection algorithm overall architecture

variance, kurtosis, skewness, and root mean square ex-
tracted from the 3-axis accelerometer and 3-axis gyro-
scope, in order to make the pre-selection step fast and fea-
sible.

Feeding Detection
The motif-based approach we designed in a prior effort in-
cludes two main processes: motif searching to generate
candidates and candidate classification. Since feeding ges-
tures across people share similar patterns, we cluster the
motifs, select the most common motifs within each clus-
ter, and search for each one in the signal to generate can-
didate feeding gestures. Then we use a trained machine
learning model to classify between feeding and non-feeding
gestures. This approach achieves both a coarse-grained
search to pick up candidates and a fine-grained classifier to
recognize real feeding gestures.

Gesture Detection Step 1: Generate Dynamic Energy Signal
Selecting the type of motif to use in our search for candi-
date feeding gestures is essential. Since feeding gestures
involve an increase in acceleration when moving the hand
to the mouth, followed by a deceleration when approaching
the mouth, and the reverse effect when moving the hand
away from the mouth, we used the intensity or energy of
acceleration to search for feeding gesture candidates.

To calculate the energy of acceleration, we first remove the
effect of gravity on acceleration by removing the fundamen-
tal frequency component from our equation. E(acc)

i

is the
dynamic energy of acceleration at time point i. X

x,i

, X
y,i

,
and X

z,i

are the amplitudes of the frequency component of
x-, y-, and z-axis acceleration. N is the Fast Fourier Trans-
form (FFT) window size. F

s

is the sampling rate.
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Gesture Detection Step 2: Motif Generation
To identify the main motifs used in the search, we cluster all
the motifs together using the K-Spectral Centroid Clustering
(KSC) approach. The KSC method can group segments of
time series data and return the generated centroid of each
group. This method is based on matrix decomposition to
compute the centroid of a cluster, using a distance measure
for pairwise scaling and shifting.

Gesture Detection Step 3: Motif Matching and Segmentation

Figure 3: Example SAX
representation of 400 points raw
time series data (n=400, w=8, a=5)

To further reduce the computation load for motif matching,
we use Symbolic Aggregate approXimation (SAX) to reduce
the dimensionality of the signals and speed up the search
for motifs. SAX takes two steps to transform time series
data into symbolic representation. Firstly, it normalizes the
data and applies the Piecewise Aggregate Approximation
(PAA) method. By equally slicing n-length time series data
to w-pieces and calculating the mean value for each seg-
ment, the n-length time series data is converted to w-length
real value representation. Secondly, the w-length series is
transformed into symbolic representation with a dictionary
of alphabet size a.

pitch = arctan(
G

yp
G

2
x

+G

2
z

)

roll = arctan(
�G

x

G

z

)
In Figure 3, the original data and SAX representations
are shown as well as the intermediate representation of
eight continuous data points. With the SAX method, the
400-length time series data is translated into the string
’ebbcbccc’. We take standard motifs from KSC clustering
as motif templates to discover motif candidates. Then the
candidates are classified by a Random Forest model.

Figure 4: A diagram of measurement criterion

Gesture Detection Step 4: Feature Extraction and Classifica-
tion
Since we are only using a single motif-based search ap-
proach, naturally there will be many confounding candi-
dates identified in the search (high recall, but low precision).
As a result we extract 89 features from the 6-axis signals
(accel and gyro) and we calculate two other signals: pitch
and roll, whose functions appear in the sidebar (shown to
be useful in identifying gestures [11]) yielding 8 signals:

G

x

, G
y

, and G

z

represent x, y, and z-axis readings from
the gyro signal. We extract from the 8 signals the follow-
ing features: mean, median, max, min, standard deviation,
kurtosis, interquartile range, quartile 1, quartile 3, skew-
ness, and root mean square (RMS). We also calculate
the duration of time for each candidate. We then apply a
trained (trained on data from other participants) Random
Forest model (N=185) to classify each candidate into a
feeding/non-feeding gesture classification. Since we use
multiple motif searches, the identified candidates overlap
in time. By summing up the number of overlapping motifs
we obtain a score (representing the probability of a feed-
ing gesture) for each time point. The higher the probability
score for one time point, the greater the likelihood of it be-
longing to a real feeding gesture.
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Gesture Detection Step 5: Defining the Event-based Measure-
ment
Since episode prediction produces results in the form of du-
ration, which is different from sample-level prediction, we
use an event-based evaluation method to determine if a
segment is true or false. When the prediction has no over-
lap with any ground truth, then the prediction undoubtedly
fails. When there is overlap between prediction and ground
truth, we categorize all the conditions into four groups:
ground truth start time is ahead of prediction start time,
prediction start time is ahead of ground truth start time, pre-
diction start and end time covers ground truth, and ground
truth covers the prediction. We use the equation below to
decide if this prediction is true. G1, G2, P1, and P2 are start
time of ground truth segment, end time of ground truth seg-
ment, start time of prediction segment, and end time of pre-
diction segment, respectively.

k =
min(G2, P2)�max(G1, P1)
max(G2, P2)�min(G1, P1)

To determine if a candidate’s feeding gesture was correct
or not, we used event-based evaluation, where we defined
an overlap ratio between ground truth and the candidate’s
feeding gesture to decide whether a segment was correctly
identified or not. We defined overlap, k, as the ratio of the
overlap of ground truth and prediction segments to the com-
bination of both ground truth and prediction segments.

Results and Analysis

Motion Detection
To ensure we captured all feeding episodes, we opted for a
high recall classifier in detecting motion. We selected a slid-
ing window size of two minutes and a stride of one minute.
We also added a one minute padding to the start and end
of each stationary episode identified, to avoid missing any
stationary episodes with feeding. We used Leave One Par-
ticipant Out (LOPO) approach to train the motion model and
predict the stationary episode. The LOPO motion detection

Figure 5: Feeding episode prediction result for Subject 1: (a)
shows the ground truth feeding gesture duration, (b) shows the
score for each time point from prediction, red circle represents
peak, (c) shows the density of the predicted feeding gestures.

achieves an average 98.25% recall and an average 60.1%
precision.

Gesture Detection
To generate feeding gesture motifs, we used the KSC clus-
tering and SAX method to generate energy-based motif
templates from the training set using ground truth. Em-
pirically we obtained optimal performance using the SAX
method with alphabet size a = 5. Given a motif length n

equal to the length of time series based on ground truth, the
number of symbols in the low dimensional approximation of
the sub-sequence is set to w = n/2.

Searching through the signal using the centroid motifs gen-
erates several candidate feeding gestures (high recall as
shown in Table 2), based on an overlap criterion (shown
in Figure 4) of 50%. The smaller the criterion, the less re-
quired overlap between ground truth and the predicted sig-
nal, and the higher the recall.

619

SESSION: HASCA



After we identify the candidate feeding gestures, we summed
the density of the feeding gestures using a 5-minute win-
dow, as shown in Figure 5. We show the LOPO feeding
episode prediction result for the eight participants in Table
2.

False Alarm Analysis

Gesture Count

texting on phone 462
walking 237
drinking 94
turning a page 58
writing 51
gesturing while talking 35
fidgeting with hand 33
holding onto train pole 28
adjusting camera 29
lifting food without eating 18
scratching eye 22
scratching/covering/touching
mouth

21

ordering food 18
touching face 17
wiping mouth 15
wiping face 14
scratching/touching chin 11
scratching/touching nose 10
scratching/touching head 14
lifting cup without drinking 14
opening a door 14
stirring noodles 13
adjusting glasses 13
biting nails 10
packing 9
capping pen 8
raising hand 8
picking up and putting down
phone

8

unwrapping food 7
wiping off bookshelf 7
picking up stuffs 7
wiping hands 7
touching hair 7
fidgeting with food 5

Table 1: Categorization result for
false alarm gestures

In this work we further explore the reasoning behind the
high false alarm rate of feeding gesture detection. We an-
alyzed the video and checked the false alarm moments
to categorize the confounding gestures that caused false
alarms. We show a detailed distribution of all the gestures
from the in-the-field real life test in Table 1.

As shown, texting on the phone causes a considerable
amount of false alarms. When we checked the video we
found that several false alarms occurred when participants
were lying on the couch and raising their hands to play with
their phones. Because we trained a LOPO generalized ma-
chine learning model on seven subjects, and tested on one,
high false alarms occur with subjects who have unique
feeding and confounding feeding gestures. This could po-
tentially be solved by having a larger sample size with more
feeding gestures.

We categorized confounding gestures shown in Table 1 into
four categories: hand up and down, extending the hand,
complex hand movement, and moving vibrations. We fur-
ther categorized the context of the false alarms as shown
in Table 4, with texting on the phone producing the largest
percentage of false alarms.

From our results we find that the high false alarm rates
can be attributed in part to incorrect wearing of the device.
When the watch is not worn with the face facing upward,
horizontal hand gestures are recognized as vertical ges-
tures. Adhering to proper wearing of the technology is a

Subject recall(p) recall(n) precision(p) precision(n) f1(mean)

P1 1 0.93 0.48 1 0.8
P2 1 0.88 0.48 1 0.79
P3 0.5 0.77 0.08 0.97 0.5
P4 1 0.46 0.12 1 0.43
P5 0.67 0.68 0.2 0.94 0.55
P6 1 0.52 0.21 1 0.51
P7 1 0.51 0.15 1 0.47
P8 1 0.88 0.5 1 0.8
Ave 0.90 0.70 0.28 0.99 0.61

Table 2: Feeding gesture detection metrics by minute (p for
positive and n for negative)

Category Example Percent

Hand up and
down

touching facial area, covering
mouth, wiping mouth, scratching
nose, scratching face, picking up
sensor from table, moving glass up
and down, flipping page, biting nails,
rub mouth,picking something up

23%

Extending hand put food on table, picking up sensor
from table, grabbing food/drink

6%

Complex hand
movement

texting on phone, wiping hand,
playing with bottle, unwrap food,
fidgetting while sitting ,wiping hands

53%

Moving vibra-
tion

walking or by vehicle 18%

Table 3: Categorization result for false alarm gestures

challenge, and greatly impacts the ability to capture true
feeding gestures.

Conclusion and Future work

Recent advancements in embedded wearable devices have
made it possible to passively identify eating by detecting
feeding gestures with the use of on-body inertial sensors.
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Category Example Percent

phone related gesture texting on phone 38%
transportation walking, 21%
facial area gesture scratching/touching

chin/eye/nose/mouth,
wiping mouth

13%

paper related gesture flipping paper, writing 9%
communication gesture gesturing while talking,

raising hand, ordering on
menu

5%

food related gesture lifting food without eating,
stirring the noodle, unwrap
food

4%

fidgeting capping pen, fidgeting with
hand

4%

others packing, opening the door,
pick up something, wiping
off bookshelf

6%

Table 4: Context categorization result for false alarm gestures

In this work, we applied a motif-based feeding gesture de-
tection system and tested it in an in-field study yielding
high recall, but a high false alarm rate, resulting in an av-
erage F-measure of 61%. We further categorized the false
alarms into different categories, with complex hand move-
ments yielding the greatest percentage of false alarms, and
phone-related gestures (texting on the phone) yielding the
largest percentage (38%) of confounding gestures. For fu-
ture work, we aim to modify our motif-based approach to
handle each of the false alarm categories identified in this
paper.
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