M Northwestern Medicine[®] Feinberg School of Medicine

Estimating Caloric Intake in Bedridden Hospital Patients with Audio and Neck-worn Sensors

Shibo Zhang*†, Dzung Tri Nguyen*†, Gan Zhang*, Runsheng Xu*, Nikolaos Maglaveras*, Nabil Alshurafa*† *Department of Computer Science *Department of Preventative Medicine Northwestern University

Introduction

- \Box 1/3 patients that arrive at a hospital in developed countries suffer from malnutrition, and another 1/3 become malnourished during their stay.
- Malnutrition leads to poor patient health outcomes, hospital-acquired conditions and longer length of hospital stays.

Goal

Nutrition monitoring in a bedridden setting given a limited set of food items, in order to:

- □ Recognize consumed food type,
- Estimate consumed calories per second.

System Evaluation

Study Design

- □ 10 participants (22-25 years of age, 9 male).
- □ Participants wore the devices around the neck and ate while laying on a patient bed in a clinical setting.
- □ They each consumed one or more of these food items: traditional bagel (N=12), turkey chili soup (N=13), Fuji apple (N=13), and potato chips (N=13).

Sensors

- □ A neck-worn sensor:
- Placed around each subjects neck. a)
- Comprising a proximity, ambient light, (oriented b) towards the chin of the subject to capture chewing) and an inertial motion sensor (measuring the lean forward angle).
- □ A lavalier microphone:

Placed on the collar of the subject.

Methods

Feature Extraction

- We extracted 34 features from audio for each second. Then we calculated the average and standard deviation of the 34 features across 5 seconds centered at each second, resulting in 68 audio features.
- extracted 98 features from the proximity, We ambient-light and LFA signal as shown in the table.

Device	Domain	Features
	Stat.	Max, min, mean
Necklace		median, variance, RN
		correlation, skewnes
		1st and 3rd quartile,
	Freq.	Amplitude at 0.25 Hz
		Hz, 1.75 Hz, 2 Hz, 2.2
	Stat. of	Skewness and kurtos
	Freq.	tures
Audio	Time	Zero Crossing Rate, I
	Stat. of	Spectral Centroid, S
	Freq.	Spectral Flux, Spectra
		tor (12), Chroma Dev

Food Type Identification

- □ Apply Random Forest Classifier (RFC) (n=100 trees) to classify food-type consumed by second based on the features extracted from audio and necklace sensors.
- □ Apply Leave One Food Out (LOFO) evaluation method to identify food-type.

Calorie Estimation

- □ Select the top 5 features using the forward feature selection algorithm out of the 166 combined features, for each food-type.
- Develop Multiple Linear Regression (MLR) model for each food-type to map second-level features to calories per second.
- □ Apply LOFO evaluation method to estimate kCals.

ss, kurtosis interquartile range Iz, 0.5 Hz, 0.75 Hz, 1 Hz, 1.25 Hz, 1.5 25 Hz, 2.5 Hz osis of spectrum from frequency fea-Energy, Entropy of Energy

Spectral Spread, Spectral Entropy, ral Rolloff, MFCCs (13), Chroma Vecviation

Results

Food Type Identification

Calorie Estimation

□ For each second, we calculate the calorie using the corresponding regression model and achieve a 3.0 kCal Absolute Error, and a 96.6% accuracy on

average. al) (KC 10 ع ш Abs

Conclusions

- neck.
- variety of food items.

□ We show, given a limited number of known food items provided to a bedridden participant the ability to identify food-type with 97.2% F1-Score, and estimate calories with a 96.6% accuracy using audio, proximity, IMU, and ambient-light sensors around the

□ Future work will incorporate testing in real patients in a hospital setting while consuming a greater