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»Static(Baseline) *Dynamic *Proposed

Assumption: Hardware resource availability
fluctuates over time
Static: uses a fixed maximum number of features
satisfying least hardware resources
Dynamic: as many features as possible are extracted
for the most recent data segment

[ Proposed: as resources become available optimize

[l Maximum achievable classification accuracy varies as feature set of past data segments
Coxtract =W * Yiva fi (2) a function of classifier type, classifier dimensionality. Conclusions

Classification Accuracy

Example: Detecting meal events (weak classifier) vs.
identifying specific foods (strong classifier).
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number of signal segmented window frames since each must be performing classifier at a given feature size. classification applications where accuracy of recognition

processed individually. is scaled as a function of available system resources.




